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SUMMARY

The term metabolome was coined in 1998, by analogy to genome, transcriptome and proteome. The first

research papers using the terms metabolomics, metabonomics, metabolic profiling or metabolite profiling

were published shortly thereafter. In this short review we reflect on the major achievements brought about

by the use of these approaches, and document the knowledge and technology gaps that are currently con-

straining its further development. Finally, we detail why we think that the time is ripe to refocus our efforts

on the understanding of metabolic function.
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INTRODUCTION

The plant kingdom is routinely stated to contain between

100 000 and 1 million metabolites (Dixon and Strack, 2003;

Rai et al., 2017), with any given species thought to contain

upwards of 5000 metabolites (Fernie et al., 2004). Although

the core central metabolism of most plant species is largely

comparable with that of non-plant species, plants and fungi

contain a vast wealth of specialized compounds that

account for the vast majority of the diversity within their

metabolomes. These specialized (also known as secondary)

metabolites collectively act as an effective arsenal against

the myriad of biotic and abiotic stresses that they, as sessile

organisms, may potentially be exposed to during their lifes-

pan. Measuring such a vast number of entities is in its own

right difficult; however, the problem is exacerbated by the

fact that metabolites have highly diverse chemistry (D’Auria

and Gershenzon, 2005), a massive dynamic range (Fernie

et al., 2004), and are often compartmented at both the cellu-

lar and subcellular level (Sweetlove and Fernie, 2013).

Given that this is a topical review, we will not dwell on

historical aspects of (plant) metabolomics; however, it

would be remiss not to provide a brief description of these.

As mentioned above, the term metabolomics was coined

by Steven Oliver in a review article on yeast functional

genomics published in 1998 (Oliver et al., 1998). Several

research papers were subsequently published at the turn

of the century that essentially defined the possibilities

metabolite profiling afforded to studies of metabolic regu-

lation and beyond (Katona et al., 1999; Fiehn et al., 2000;

Fraser et al., 2000; Roberts, 2000; Roessner et al., 2001a;

Sarry et al., 2006; Duenas et al., 2017). In essence, all of

these papers describe the application of non-targeted pro-

filing methods; however, although by nature largely

descriptive, they heralded a widespread adoption of more

sophisticated multivariate statistics in studies of plant and

cellular function (Fiehn et al., 2000; Roessner et al., 2001a;

Sumner et al., 2003; Fraser et al., 2007). Following on from

these studies the tools of metabolomics have been

brought to bear on an exhaustive range of biological ques-

tions. Indeed, they are now so plentiful that it is probably

no longer possible to feature them all in a comprehensive

review. Several recent reviews provide very good coverage

on a topic-by-topic basis, however (Fridman and Pichersky,

2005; Tholl et al., 2006; Gaquerel et al., 2014; Feussner and

Polle, 2015; Sumner et al., 2015; Dong et al., 2016; Tenen-

boim and Brotman, 2016; Wen et al., 2016; Rai et al., 2017;

Showalter et al., 2017). In the current article we plan

mainly to review classical papers and provide a perspec-

tive of the challenges that remain both with regards to

technical aspects but also in defining the in vivo function

of metabolites (for highlight see Box 1).
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METABOLOMICS TECHNOLOGIES

Current plant metabolomics strategies are reliant on either

mass spectrometry- or nuclear magnetic resonance (NMR)-

based approaches. A number of detailed protocols have

been published (Lisec et al., 2006; De Vos et al., 2007; Kru-

ger et al., 2008; Tohge and Fernie, 2010), alongside several

excellent technical reviews (Fiehn, 2002; Sumner et al.,

2003; Kopka et al., 2004; Cajka and Fiehn, 2014; Fiehn et al.,

2015; Lu et al., 2017). In response, we will restrict ourselves

here to just a brief outline of the relative advantages and

disadvantages of the three major methods currently in use,

namely gas-chromatography mass-spectrometry (GC-MS),

liquid-chromatography mass-spectrometry (LC-MS) and

NMR. In brief, NMR is able to detect only highly abundant

metabolites, or alternatively metabolites extracted from

very large tissue volumes, because of its reliance on mea-

suring atoms with non-zero magnetic moment. By contrast

to MS-based approaches, which detect at the molecular

level, NMR is an atomic-level approach providing high util-

ity in both isotope tracing experiments and structural eluci-

dation (Fernie and Tohge, 2017). Despite this advantage,

coupled chromatographic and MS-based approaches, such

as GC-MS and LC-MS, are far more frequently adopted. In

GC-MS, polar metabolites are derivitized to render them

volatile and then separated by GC. Electron impact ioniza-

tion results in highly reproducible fragmentation patterns

that are essential for large-scale experiments (Fernie et al.,

2004). GC-MS has the twin advantages of being relatively

sensitive and highly robust, meaning that it can routinely

measure hundreds of analytes (mass spectral features that

are of either known or unknown chemical identity) in thou-

sands of samples affording good coverage of primary

metabolism. That said, it is LC-MS that currently provides

the most comprehensive approach. Unlike GC-MS it does

not require prior sample treatment, but the choice of col-

umns, including reversed phase, ion exchange and

hydrophobic interaction, provides metabolite separation

on the basis of differential chemical properties. The twin

developments of ultra-performance LC (UPLC) and high-

resolution mass spectrometry rendered the technique even

more powerful with regard to resolution, sensitivity and

throughput (Fernie and Tohge, 2017), with data on over

1000 metabolites being accessible using either direct infu-

sion or coupled UPLC high-resolution MS (Aharoni et al.,

2002; Kind and Fiehn, 2007; Giavalisco et al., 2011). High-

resolution MS provided a massive boost to metabolomics,

with sufficient accuracy to determine the exact chemical

composition, but not structure, of each analyte. Multiple

rounds of MS can aid in structural identification, however,

via the identification and assembly of the resultant

metabolite fragments. It is important to note that although

many analytes in GC-MS remain unannotated, relatively

new novel metabolites are found by this method, which

relies largely on co-elution with known standards, whereas

in LC-MS a considerable number of novel compound anno-

tations are currently being generated on a regular basis.

Despite being the most comprehensive technique to hand,

LC-MS by no means approaches the metabolic complement

of a typical plant cell (Figure 1; Tables 1 and S2). Collec-

tively, these data illustrate that despite considerable recent

advances, improving the coverage of the plant metabolome
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Figure 1. Metabolite diversity and coverage. (a) Approximate number of

metabolites present in Escherichia coli, human and plants. (b) Approximate

number of metabolites that we can measure. Metabolite numbers were

taken from those reported in the following papers (E. coli, Guo et al., 2013;

Sajed et al., 2016; human, Wishart et al., 2018; and plants, Dixon and Strack,

2003; Saito and Matsuda, 2010; Afendi et al., 2012; Wink, 2015; Rai et al.,

2017).

Box 1 Highlights

• The plant kingdom contains a vast repertoire of

metabolites involved both in core essential functions

and in plant interactions with their environment

• The coverage of the metabolic complement of this

kingdom remains relatively sparse

• Both technical and computational efforts to improve

coverage of the metabolome are under way, and

our abilities are considerably beyond those of 20

years ago

• Of the few thousand metabolites we can currently

assign either unambiguously or with a high level of

confidence, the precise in vivo function of many is

unknown, and even their spatial abundance is not

always clearly understood

• Combining standard metabolomics approaches with

studies of wide natural variance and the use of

either genome-editing techniques or combinatorial

transformation potentially offer powerful tools by

which the function of an individual metabolite can

be assigned
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remains a major technical challenge for metabolomics. The

wide range of numbers listed is illustrative of the difficulty

in predicting the metabolite complement of the cell, which,

unlike those of the transcript and protein, is genome-inde-

pendent (Oliver et al., 1998). We will return to the issue of

the comprehensiveness of the plant metabolome after a

brief historical overview of the major uses of metabolomics

in research in the field of plant science. Before doing so, we

should state that we use the terms metabolomics and

metabolite profiling interchangeably here, using both to

describe non-targeted metabolite analyses.

EARLY PLANT METABOLOMICS STUDIES

The earliest application of these tools in plants largely

used GC-MS or LC-MS, or direct-injection MS, to profile

transgenic plants (Fiehn et al., 2000; Roessner et al., 2001a;

Aharoni et al., 2002; Bovy et al., 2002, Chen et al., 2003),

environmentally challenged plants (Hirai et al., 2005; Niki-

forova et al., 2005; Suzuki et al., 2005; Urbanczyk-Wochniak

and Fernie, 2005; Allwood et al., 2006; Lugan et al., 2010)

or both (Roessner et al., 2001b). In addition, there were

several studies that used metabolomics as screening

approaches. For example, metabolomics was used in

efforts to identify metabolic biomarkers that were able to

predict future aspects of plant performance (Meyer et al.,

2007), to identify herbicide mode of action by comparing

herbicides of known and unknown targets (Trenkamp

et al., 2009), and to assess whether genetically modified

crops were substantially different from conventional

cultivars (Catchpole et al., 2005). These approaches, like

those aimed at providing detailed and accurate descriptive

information concerning the consequences of a biological

intervention (detailed below), relied on the marriage of

chemical analytics with statistical methods that were new

to most people studying plant metabolism. In the early

years of metabolomics both types of experiment were car-

ried out at relatively low throughput, with any one publica-

tion reporting datasets with sample sizes below 100. There

are three studies that we think are worthy of highlighting

here. First, the study of Fiehn and co-workers used GC-MS

to evaluate 326 analytes in comparing a developmental

mutant (stomatal density and distribution, sdd) and a

metabolic mutant (digalactosyldiacylglycerol, dgd) of Ara-

bidopsis with their respective wild types (Fiehn et al.,

2000). Perhaps unsurprisingly, they observed that the

metabolic mutant exhibited greater differences than the

morphological mutant from their respective wild types.

Secondly, the studies of Roessner et al. (2001a,b) carried

out GC-MS profiling of 60 known and 27 unknown metabo-

lites of a range of transgenic Solanum tuberosum (potato)

lines expressing elevated sucrolytic activity in a tuber-spe-

cific manner alongside wild-type tuber material supplied

with various exogenous concentrations of sugars. This

transgenic material had been created with the aim of

enhancing tuber starch content, but actually resulted in the

opposite phenotype. The metabolic profiling studies were

able to demonstrate that this was the result of a massive

activation of respiration and amino acid biosynthesis

(Roessner et al., 2001a). Moreover, the combination of the

feeding experiments and principal component analysis

(PCA) indicated that this was induced by the high levels of

glucose (and to a lesser extent fructose), thus providing

a mechanistic explanation for the failed metabolic

engineering strategies (Roessner et al., 2001b). Thirdly,

LC-MS-based metabolite profiles of Arabidopsis revealed

2000 different mass signals (analytes) from roots and

leaves, with many of these representing specialized

metabolites (von Roepenack-Lahaye et al., 2004). This

study used the chalcone synthase-deficient tt4 mutant to

demonstrate that subtle differences between samples can

be observed; however, perhaps more importantly the

demonstration of the sensitivity and resolving power of

this technique greatly expanded the range of metabolic

profiling at this time point.

These studies collectively broadened our depth of under-

standing of the metabolic responses to the respective per-

turbations, but in addition provided us with far greater

direct understanding of metabolic network behavior than

was available from previous studies. In this vein, correla-

tion analysis was documented to be a powerful technique

for assigning metabolites to the biochemical pathways to

which they belong (Weckwerth and Fiehn, 2002). Such

information was important in achieving a more holistic

Table 1 Estimated number of specialized metabolites in plants per
compound class

Alkaloids
Amines 100
Cyanogenic glycosides 60
Glucosinolates 100
Alkamides 150
Lectins, peptides, polypeptide 2000
Non-protein amino acids 700

Phenolics
Phenylpropanoids and flavonoids, anthocyanins,
carotenoids

8000–9000

Polyacetylens 1000
Polyketides 750

Terpenoids
Triterpenes, steroids, saponins 5000
Tetraterpenes 500
Diterpenes 2500
Sesquiterpenes 5000
Monoterpenes, iridoids 2500

Note that these are largely estimates based on the literature, and
the true number is likely to be considerably higher, given that new
metabolites are consistently being reported. Metabolite numbers
were taken from the following studies: Tohge et al. (2014); Ver-
poorte and Alfermann (2000); Wink (2004); Wink (2015); Ziegler
and Facchini (2008).
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understanding, both as a font of fundamental knowledge

but also with regards to a more rational design of meta-

bolic engineering strategies, aimed either at increasing the

production of high-value metabolites or alternatively at

increasing crop yield (Sweetlove et al., 2017).

GENE FUNCTIONAL ANNOTATION AND METABOLIC

QUANTITATIVE TRAIT LOCI ANALYSES

In the last decade, metabolomics has become an essential

tool in the elucidation of functional annotation of genes

associated with metabolism. For this purpose three major

approaches have been used: (i) direct testing of candidate

genes via the analysis of knock-out mutants; (ii) quantita-

tive trait loci (QTL) mapping of the genes determining the

abundance of specific metabolites; and more recently (iii)

genome-wide association studies (GWASs) of metabolite

abundance. Two groundbreaking papers using the first

approach were published in 2005. The first of these used

the combination of transcriptomics and metabolomics to

identify genes and metabolites associated with the pig-

mentation of the PAP1 activation tagged line (Tohge et al.,

2005). The second used the inducibility of the triterpene

saponoid pathway to identify glucosyl transferases in a

similar manner (Achnine et al., 2005). Follow-up research

following further co-expressed genes related to these path-

ways have subsequently allowed the expansion of the

phenylpropanoid pathway to include more than 40 genes

and metabolites (Tohge and Fernie, 2010), whereas the

saponin pathway has also been greatly further expanded

(Thimmappa et al., 2014). Other pathways wherein major

improvements in gene annotation and even pathway struc-

ture have been elucidated following similar methods

include cell wall and terpene biosynthesis, photorespira-

tion, mitochondrial carrier proteins and monolignol trans-

port (Persson et al., 2005; Araujo et al., 2011; Alejandro

et al., 2012; Geu-Flores et al., 2012; Pick et al., 2013). It is

important to note that the use of the co-expression

approach is of course limited to pathways that are mainly

regulated at the level of expression, however. Neither QTL

nor GWAS approaches suffer from this limitation.

The QTL approach was first taken in 2006 in parallel

studies looking at the primary metabolism of Solanum

lycopersicum (tomato; Schauer et al., 2006) and the spe-

cialized metabolism of Arabidopsis (Keurentjes et al.,

2006). Keurentjes et al. quantified the levels of 2000 ana-

lytes representing the specialized metabolism of Arabidop-

sis in a population derived from the Ler and Cvi ecotypes

(Keurentjes et al., 2006). Much of the follow-up work on

Arabidopsis has been carried out by the laboratories of

Dan Kliebenstein and Lothar Willmitzer (Lisec et al., 2008;

Rowe et al., 2008; Joseph et al., 2015a,b). Their work

addressed many aspects of the genetics of metabolism,

including a comparative analysis of population types, and

the evaluation of heterosis, heritability and the

environmental plasticity of the plant metabolome (Joseph

et al., 2015b). Work in the Kliebenstein laboratory addition-

ally quantified the influence of genetic information from

the organellar genomes on the metabolome (Joseph et al.,

2015a,b), studied epistatic interactions and defined novel

potential biochemical networks (Rowe et al., 2008).

The study on tomato was based on a very well charac-

terized Solanum pennelli introgression line population, for

which a massive volume of yield-associated and develop-

mental data is available (Lippman et al., 2007). Thus the

study was able not only to define almost 900 QTL for pri-

mary metabolites (including several that were subse-

quently cloned; Kochevenko and Fernie, 2011; Quadrana

et al., 2014), but also to link fruit amino acid content to the

harvest index (Schauer et al., 2006; Do et al., 2010). This

work, alongside follow-up papers on specialized metabo-

lites, volatile organic compounds and acyl sugars (Tieman

et al., 2006; Schilmiller et al., 2010; Alseekh et al., 2015),

led to the identification of more than 2000 metabolic QTL.

Although a recently created backcrossed inbred line gener-

ated from the same parental lines affords far greater

genetic resolution, and has already been applied to the

study of cuticle composition, acyl sugar and primary meta-

bolism (Ning et al., 2015; Fan et al., 2016; Ofner et al.,

2016; Alseekh et al., 2017). QTL analysis has subsequently

been carried out for a range of other important crops,

including Oryza sativa (rice; Matsuda et al., 2012), Triticum

aestivum (wheat; Hill et al., 2013), Zea mays (maize; de

Abreu E Lima et al., 2018; Wen et al., 2018), Hordeum vul-

gare (barley; Templer et al., 2017) and potato (Carreno-

Quintero et al., 2012). These studies collectively identified

a large number of structural and regulatory genes involved

in the control of metabolite abundance in crops, and mas-

sively improved our understanding of the structure of the

metabolic pathways as well as defined important leads for

metabolic engineering (Wen et al., 2016).

The third commonly taken approach is that of assessing

the natural variance of the metabolome. Whilst the earliest

studies in this vein (Bentsink et al., 2000; Schauer et al.,

2005b), proceeded the utilization of metabolomics in the

advanced breeding populations described above, the true

power of this approach has only more recently been rea-

lized with the widespread adoption of GWAS approaches.

The fundamental premise of GWAS, which was developed

for use in medical genetics, is that the incidence of nucleo-

tide polymorphisms is associated with the variance of a

given trait (Fernie and Tohge, 2017). Early applications in

plants included the study of the efficiency of nitrogen use

(Loudet et al., 2003) and glucosinolate metabolism

(Kliebenstein et al., 2001). Broader metabolite profiling

studies followed these. First, performing GC-MS on a set of

94 ecotypes provided important insight into metabolic com-

ponents of the genetic control of plant growth, suggesting

that starch and protein are major determinants of growth
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(Sulpice et al., 2009, 2010). The evaluation of specialized

metabolites in a subset of these revealed that approxi-

mately half of them contained a set of 18 previously uniden-

tified compounds, which were revealed, by a battery of

chemical analyses, to be phenylacylated flavonols, and

facilitated the identification and functional analysis of the

gene responsible for their production (Tohge et al., 2016).

Further studies in Arabidopsis have focused on the genetic

architecture of glucosinolates (Chan et al., 2011) and

branched chain amino acids (Angelovici et al., 2017), as

well as looking at primary and specialized metabolism (Wu

et al., 2016, 2018), with these studies improving their reso-

lution by combining metabolomics with transcriptomics

and/or network analyses.

Genome-wide association studies (GWASs) have also

recently been used in combination with metabolomics in

tomato (Sauvage et al., 2014; Tieman et al., 2017; Ye et al.,

2017), maize (Wen et al., 2014) and rice (Matsuda et al.,

2015). These studies all identified candidate genes underly-

ing important nutritional and or taste traits. Alongside the

identification of genes underlying quantitative traits, the

study of broad natural variation has recently additionally

been used to better understand the evolution of metabo-

lism, and specifically to address the question of how meta-

bolism has altered during crop domestication (Chan et al.,

2010; Kliebenstein, 2013a,b). Two studies best illustrate

this. First, a deep evaluation of changes in primary meta-

bolism in cultivated wheat, and its progenitor species,

demonstrated that a reduction in unsaturated fatty acids

was associated with selection during the primary domesti-

cation of emmer wheat, but that selection-driven changes

in amino acid content mark the domestication of durum

wheat (Beleggia et al., 2016). Secondly, a combined analy-

sis of the genomes, transcriptomes and metabolomes of

several hundred tomato fruit has illustrated how global

breeding has altered the metabolite content of the fruit.

Several features of domestication were associated with

changes in metabolite content, namely the selection of

alleles of genes associated with the increase in fruit size,

those for the reduction of anti-nutritional steroidal glycoal-

kaloids, the breeding of pink tomatoes for the Asian market

and the introgression of resistance genes from wild culti-

vars (Zhu et al., 2018). As such, this study was able to pro-

vide a very comprehensive view of the metabolic breeding

history of the tomato. The suggestion that metabolic genes

had hitchhiked during selection had been made prior to

this study (Bellucci et al., 2014), and seems likely to have

occurred during the domestication of all of our crops (Gio-

vannoni, 2018).

IMPROVING OUR COVERAGE OF THE PLANT

METABOLOME

In parallel with the considerable advances in the applica-

tion of metabolomics to address important biology

questions, the last 20 years have been characterized by

impressive advances in coverage. This is best defined as

the number of metabolites that we are able to measure

(which is best assessed by looking at the number of known

or anticipated metabolites that a given organism contains

and the number that can be accurately quantified). As sta-

ted above, this is in part a result of the improved machine

performance afforded by the development of UPLC cou-

pled with high-resolution MS, but has also relied on

increased efforts in the collection of standard compounds

and the sharing of reference extracts (for example, see

Shahaf et al., 2016) for use in peak annotation authentica-

tion, and the increased sophistication of computation

approaches for compound annotation (compare the web

resources listed in Tohge and Fernie, 2009 with those listed

in de Souza et al., 2017). As mentioned above, and detailed

in Figure 1 and Tables S1 and S2, metabolomics tech-

niques can now afford relatively good coverage of prokary-

otes such as Escherichia coli, and even unicellular

eukaryotes such as Saccharomyces cerevisiae. The cover-

age of multicellular eukaryotes is relatively poor, however.

For example, the coverage of the human metabolome,

which can be considered to be representative of the animal

kingdom, is in the region of 60–70%. Similarly, we are able

to measure only a few thousand plant metabolites,

whereas between 100 000 and 1 million are estimated to

be extant within the plant kingdom. It is important to note

that these numbers are in no way exact and are instead

best regarded as rough estimates, as much of the informa-

tion found in the literature is rather nebulous. Despite this

progress, even using the most optimistic estimates of our

coverage of the plant metabolome it is clear that the

majority of metabolites are not covered in current profiling

methods. Experimentally this is being tackled by the collec-

tion of large-scale libraries of metabolites, such as the

WEIZMASS library (Shahaf et al., 2016); however, although

these libraries certainly increase the numbers of metabo-

lites that we can detect, a huge number of unknown ana-

lytes remain unaccounted for, and many known

metabolites cannot be accessed by current metabolomics

technologies. It seems likely that the diversification of

extraction protocols to mirror the diversity of the chemistry

of metabolites will be necessary as we try to bridge the

gap between what is there and what we can measure.

In addition, effectively using the vast computational

resources will be paramount to meeting this challenge. A

huge number of databases have arisen that aid in metabo-

lite annotation (for a review, de Souza et al., 2017). Two of

particular note are the Golm Metabolome Database (Kopka

et al., 2005) and MassBank (Horai et al., 2010), covering

primary and specialized and lipid metabolism, respectively.

The first of these demonstrated the robustness of GC-MS

output by illustrating that, if the same chromatography col-

umn is used, metabolites can be annotated in highly
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diverse biological samples irrespective of the machine

used (Schauer et al., 2005a). For LC-MS, the situation is

more complex; however, the MassBank database has pro-

ven a highly useful tool for sharing mass spectral informa-

tion from LC-MS instrumentation, and several guides for

using high-resolution MS are also highly helpful (Kind and

Fiehn, 2007). In the case of lipids, the coverage is consider-

ably better, possibly because of the high degree of conser-

vation and the fact that within a compound class the

structures are largely predictable (Kind et al., 2013). The

database BinBase contains 1561 studies and 114 795 sam-

ples and a total of 9563 unique metabolites, 1020 of which

have been identified. Furthermore, it was recently demon-

strated that many unknowns could be effectively identified

by reference to 14 metabolome databases, on the basis of

their elemental formulae and in silico fragmentation (Lai

et al., 2018), highlighting the power of this approach.

TOWARDS METABOLITE FUNCTION

Although the research described above details how meta-

bolomics has been used to define the way in which the

general metabolic landscape changes in response to

genetic or environmental perturbation. The first of these

was the very early GC-MS-based example that enhanced

glucose levels was the underlying mechanism producing

the metabolic phenotypes observed in transgenic potatoes

exhibiting enhanced sucrose cleavage (Roessner et al.,

2001b). The second was related to the LC-MS-based char-

acterization of the 18 novel phenylacylated flavonoids in

Arabidopsis, which were named saiginols, and were

demonstrated to confer enhanced UV resistance (Tohge

et al., 2016). A similar LC-MS-based study in rice was able

to identify a different modified phenylpropanoid, namely a

glycosylated flavone, that exhibits a similar function (Peng

et al., 2017). Many metabolite-mediated defense

responses have also been identified via metabolomics

approaches, including those mediated by coniferin and

scopolin (Sonderby et al., 2010; Ward et al., 2011;

Pichersky and Raguso, 2016). Similarly, the targeted profil-

ing of glucosinolates recently uncovered a newly evolved

regulation of the anciently conserved target of rapamycin

(TOR) pathway in energy regulation (Malinovsky et al.,

2017), whereas a role for trehalose 6-phosphate has been

suggested in a wide range of developmental processes

(Figueroa and Lunn, 2016). A novel approach to under-

stand metabolite function that has recently emerged is

that of probing metabolite–protein interactions (Veyel

et al., 2017; Piazza et al., 2018), which is commonly per-

formed by the co-elution of metabolites and proteins fol-

lowing the separation of the proteins. It would seem

reasonable to anticipate that such studies, which admit-

tedly remain in their infancy, are likely to prove an impor-

tant source of information regarding how metabolites

function in cellular regulation.

WHAT HURDLES REMAIN?

Having documented the development of plant metabolo-

mics from its inception to the present day, we would like to

use the rest of this review to address the second part of the

question raised in the title. There are two major challenges

facing plant metabolomics: the technical challenge of

improving coverage and the biological challenge of improv-

ing our understanding of metabolite function (see Box 2).

There are multiple facets to the technical problem. Given

the wide diversity in the dynamic range of abundance and

in the chemistry of metabolomics, it is currently difficult to

envisage a (nearly) catch-all approach analogous to that

afforded by RNA sequencing. On the one hand, machine

improvements could allow for higher sensitivity and long-

heralded approaches such as hyphenated-NMR technolo-

gies could result in massive gains in coverage. That said,

coverage is likely to be dramatically increased with the

technology that we currently have to hand; however, this

would require a considerable coordinated effort, whereby

multiple tissues from multiple species are evaluated by

carrying out many different types of extraction and analyz-

ing them (all) on all currently available platforms. Such

open exchange of materials would surely also enhance the

cross-comparability of results, which is an important pre-

requisite if we want to tap into the fantastic computational

resources that have been developed for this discipline.

They would also potentially allow the construction of a

searchable database that warehouses changes in metabo-

lite levels on the scale of Genevesigator (https://genevesti

gator.com), for example.

A couple of emergent strategies warrant a mention here,

namely the use of isotope labeling and the development of

metabolite imaging techniques. The first approach has

already been demonstrated to be a powerful way of

improving the annotation of plant metabolites (Feldberg

et al., 2009; Giavalisco et al., 2011; Wang and Jones, 2014),

as well as providing powerful information concerning both

the elucidation of pathway structures (e.g. Arrivault et al.,

2017) and gene function annotations (e.g. Dal Cin et al.,

2011). For these methods the coverage is essentially as

high as that for the analytical technique in use. Metabolite

imaging techniques meanwhile provide high or even ultra-

high spatial resolution of metabolite abundances (Dong

et al., 2016); however, to date their coverage is currently

relatively limited.

Moving to the second challenge, a vital question is why

has the specific function of most plant metabolites not

yet been characterized? One problem is that their biologi-

cal properties are largely described for a class of com-

pounds rather than for individual metabolites.

Furthermore, the promiscuity of many enzymes of special-

ized metabolism (which produce the majority of plant

metabolites), alongside the general intricacy of most
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metabolic networks, renders it difficult to modify the con-

tent of a single metabolite without affecting the others.

These features of metabolism hence make it very difficult

to directly assess metabolite function via conventional

reverse-genetics strategies. For this purpose, more sophis-

ticated methods, in which the kinetic properties of the

respective enzymes are altered, are likely to be required.

Although approaches to tackle this are likely to involve

relatively complex strategies, we believe that they will be

instrumental in helping us to ascertain the precise func-

tion of specific metabolites and the biological circum-

stances under which they play the most important role.

First steps towards the latter have been made in an ele-

gant study, in which the roles of flavonoids in the core

pathway were tested in a range of mutants under condi-

tions of oxidative and drought stress (Nakabayashi et al.,

2014; Cao et al., 2017); however, these authors were only

able to draw conclusions concerning the role of flavo-

noids as a compound class, and further studies are

required to dissect the quantitative contributions of indi-

vidual flavonoid species to the conferment of stress toler-

ance. We would argue that the identification of metabolite

function on a metabolite-by-metabolite basis arguably

represents the real grand challenge as metabolomics

enters its third decade.
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