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ABSTRACT

Metabolic genome-wide association studies (mGWAS), whereuponmetabolite levels are regarded as traits,

can help unravel the genetic basis ofmetabolic networks. A total of 309Arabidopsis accessionswere grown

under two independent environmental conditions (control and stress) and subjected to untargeted LC–MS-

based metabolomic profiling; levels of the obtained hydrophilic metabolites were used in GWAS. Our two-

condition-based GWAS for more than 3000 semi-polar metabolites resulted in the detection of 123 highly

resolved metabolite quantitative trait loci (p% 1.0E-08), 24.39% of which were environment-specific. Inter-

estingly, differently from natural variation in Arabidopsis primary metabolites, which tends to be controlled

by a large number of small-effect loci, we found several major large-effect loci alongside a vast number of

small-effect loci controlling variation of secondary metabolites. The two-condition-based GWAS was fol-

lowed by integration with network-derived metabolite–transcript correlations using a time-course stress

experiment. Through this integrative approach, we selected 70 key candidate associations between struc-

tural genes and metabolites, and experimentally validated eight novel associations, two of them showing

differential genetic regulation in the two environments studied. We demonstrate the power of combining

large-scale untargeted metabolomics-based GWAS with time-course-derived networks both performed

under different abiotic environments for identifying metabolite–gene associations, providing novel global

insights into the metabolic landscape of Arabidopsis.
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INTRODUCTION

Plants produce large arsenals of structurally and biologically

diverse metabolites. The plant metabolome is often regarded

as the terminal downstream product of the genome and,

thus, as the bridge between the genotypes and the phenotypes

of the plant (Agrawal et al., 2012; Navarova et al., 2012;

Prasad et al., 2012; Kerwin et al., 2015). Therefore, unraveling

the genetic control underlying metabolite abundance can

remarkably enhance our understanding of plant integral

regulatory systems for key metabolic traits. Leveraging

advances in high-throughput sequencing, genome-wide associ-
118 Molecular Plant 11, 118–134, January 2018 ª The Author 2017.
ation study (GWAS) exploits natural genotypic variation and en-

ables the analysis of associations between hundreds of thou-

sands of single-nucleotide polymorphisms (SNPs) and specific

phenotypes (Nielsen et al., 2011; Weigel, 2012; Soltis and

Kliebenstein, 2015). This powerful genetic resource, along with

the development of advanced mass spectrometry (MS)

platforms, has made it possible to regard detected metabolites

as phenotypic traits for conducting metabolite-based GWAS
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(mGWAS), resulting in high-resolution maps of genomic regions

associated with metabolite variation, namely metabolic quantita-

tive trait loci (mQTL) (Kliebenstein et al., 2002; Chan et al., 2010b,

2011; Riedelsheimer et al., 2012; Li et al., 2013, 2014; Chen et al.,

2014; Wen et al., 2014; Matsuda et al., 2015; Wu et al., 2016).

mGWAShasbeensuccessfullyapplied todetect linksbetween tar-

geted secondarymetabolites and structural genes, involved in glu-

cosinolate biosynthesis (Kliebenstein et al., 2002; Hansen et al.,

2008; Chan et al., 2010b, 2011), flavonoid metabolism

(Routaboul et al., 2012; Bac-Molenaar et al., 2015; Ishihara et al.,

2016), and the phenylpropanoid pathway (Li et al., 2014) in

Arabidopsis thaliana, as well as in several crop species

(Riedelsheimer et al., 2012; Li et al., 2013; Chen et al., 2014;

Sauvage et al., 2014; Wen et al., 2014; Matsuda et al., 2015).

Despite the wide application of conventional methods (e.g.,

transcriptomeco-expression andgenome-wide similarity analysis)

in the identification of novel genes, mGWAS detects key genes

involved innaturallyoccurring limitingsteps. Forexample,mGWAS

led to identification of genes encoding two 2-oxoglutarate-depen-

dent dioxygenases (AOP2 and AOP3) that are responsible for

natural variation in the presence of methylsulfinylalkyl, alkenyl,

and hydroxyalkyl glucosinolates (Kliebenstein et al., 2001).

The mapping-based discovery of BGLU6, a glycoside hydrolase

family 1-type gene involved in flavonoid metabolism, elucidated

naturally occurring loss-of-function alleles in some Arabidopsis

accessions, explaining natural variation in flavonol glycoside

accumulation in Arabidopsis strains (Ishihara et al., 2016).

Moreover, mGWAS has been increasingly applied to wider

scope by using untargeted metabolomics in order to uncover

new and uncharacterized genes/pathways. Gas chromatography

time-of-flight MS (GC–TOF-MS)-based untargeted metabolomics

was successfully applied to conduct mGWAS in 96 A. thaliana

accessions, mainly focusing on primary metabolites, to query

the genotypic components controlling the diversity of the Arabi-

dopsis metabolome (Chan et al., 2010a). While some mapping

studies performed cross-validation for QTL identification in

different environments/locations (Korte et al., 2012; Wen

et al., 2014), only very few pioneering investigations induced

artificial stresses to increase the number of identified new loci

(Chan et al., 2011; Davila Olivas et al., 2016). That said, the

application of untargeted liquid chromatography–MS (LC–MS)-

based metabolomics to Arabidopsis GWAS panels, especially

concentrating on causal-locus identification in different environ-

ments for secondary metabolite levels, remains lacking.

In our previous report (Wu et al., 2016), we were able to

provide improved detection of causal genes for 94 primary

metabolites in Arabidopsis by integrating quantitative genetics

with metabolite–transcript correlation-network analysis. Here,

applying a novel strategy, we subjected the same collection of

309 A. thaliana accessions grown in two distinct environmental

conditions (control and stress) to untargeted metabolomics-

based GWAS for more than 3000 LC–MS-measured semi-polar

metabolites (mainly secondary metabolites). The two-condition-

based GWAS resulted in the detection of 123 highly resolved

mQTLs, 24.39% of which were environment-specific. Using a

statistical framework for five distinct metabolite classes, we

demonstrated that the stress GWAS displayed increased accu-

racy and sensitivity in true-causal-gene discovery, revealing the

power of conducting GWAS in different environments. In parallel,
M

metabolite–transcript correlation networks were constructed

based on a time-course stress experiment featuring eight

different light/temperature conditions. The combination of

GWAS and network analysis allowed the identification of 42 key

trait–locus associations, leading to 70 candidate genes. Besides

well-characterized secondary metabolite–gene associations, we

discovered a substantial number of novel associations, part of

which were validated by genetic analyses. Our study demon-

strates the merit of conducting untargeted metabolomics-

based GWAS in multiple different environments as an unbiased

approach for uncovering new regulatory genes.
RESULTS

Comprehensive Metabolic Profiling of Arabidopsis
Accessions under Control and Stress Conditions

The induced biosynthesis of many metabolites solely under

stress conditions hinders our efforts to obtain a complete picture

of plant metabolic pathways. Considering this, we conducted un-

targeted metabolomics-based mGWAS in two different environ-

mental conditions (control and stress). Abiotic stress (darkness

and 32�C), along with normal condition, were applied in our

two-condition-based GWAS. This particular stress was selected

from our previous time-course stress experiment (Caldana et al.,

2011). In that experiment we observed the highest number of

significantly changed secondary metabolites across 23 time

points in the darkness and 32�C conditions compared with

seven other stress conditions.

Using high-throughput LC–MS analysis, we detected and rela-

tively quantified 4182 and 3968 distinct metabolite features in

309 Arabidopsis accessions (Supplemental Table 1) under

control and stress conditions, respectively, using positive and

negative ionization modes. Most of metabolite features were

detected in both control and stress conditions, but 1443 and

1178 were control specific and stress specific, respectively

(Supplemental Figure 1). Next, we grouped the metabolite

features according to accurate mass difference, retention time,

and correlation between metabolite features across all

accessions, resulting in 2916 (control) and 2463 (stress) unique

metabolites. Chemical structures of 128 metabolites were

identified or putatively annotated with information of metabolite

identification confidence level (Supplemental Table 2), following

a previous publication (Sumner et al., 2007).

Normalized metabolite data identified under the control and

stress conditions are provided in Supplemental Table 3. The

levels of each metabolite feature varied widely across the

natural accessions in control and stress conditions, with a

higher proportion of metabolite features showing >10-fold differ-

ence under stress than in the control condition (Supplemental

Figure 2). Among the 2790 common (detected in both

condition) metabolite features, 2148 (77%) of the features

displayed broad-sense heritability (H2) greater than 0.5, while

1618 (58%) had heritability greater than 0.7 (Supplemental

Figure 3). On the basis of metabolite-feature levels (peaks

in LC–MS datasets), principal component analysis (PCA)

clearly separates these natural ecotypes into two different groups

in accordance with the two environmental conditions

(Supplemental Figure 4).
olecular Plant 11, 118–134, January 2018 ª The Author 2017. 119
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Genetic Basis Underlying the Arabidopsis Metabolome

Using the GWAS, more than 56% of the metabolite features in

two different conditions had at least one associated locus at a

genome-wide significance level of p % 5.01E-06 (LOD R 5.3).

In total, 5210 and 5182 distinct trait–locus associations were

identified for the control and stress conditions, respectivey, re-

sulting in, on average, around two associated loci for each

metabolite feature (Supplemental Table 4). Manhattan plots of

the significant loci detected repeatedly are illustrated, including

174 loci corresponding to glucosinolates, flavonoids,

phenylpropanoids, amino acids and their derivatives, nucleic

acids and their derivatives, and other known metabolites, as

well 437 loci corresponding to currently unknown metabolites

for control condition; in the stress condition, there are 167 and

443 identified loci corresponding to known and currently

unknown metabolites, respectively (Figure 1A).

To obtain robust mQTL, we applied a higher LOD threshold of

8.0 for further investigation, resulting in 123 highly resolved

mQTLs. We then compared the mQTLs in the control condition

(LOD R 8.0) with the ones in the stress condition (LOD R 5.3),

as well as vice versa (stress at LOD R 8.0; control at LOD R

5.3). We defined environment-specific mQTLs as those either de-

tected in only one specific condition or those detected in both con-

ditions but with DLOD > 3. Using this definition, we detected 13

and 17 control- and stress-specific mQTLs, respectively, totaling

24.39% of all the detected mQTLs in both conditions at a LOD

threshold of 8.0 (Figure 1B). The full lists of significant

associations between metabolite traits and genes (p % 1.0E-08,

LOD R 8.0) are presented in Supplemental Table 5.
Evaluation of the Performance of GWAS Conducted in
Different Environments

We used five distinct metabolite classes (glucosinolates, flavo-

noids, phenylpropanoids, amino acids, and amines) to test the

performance of our GWAS and to demonstrate the power of con-

ducting GWAS in different environments in identifying causal loci.

For each metabolite class, we generated two gene lists (‘‘actual

gene list’’ and ‘‘reference gene list’’). The actual gene list refers

to a list of genes from our actual GWAS results that each metab-

olite class mapped to in only control, only stress, and control +

stress datasets, using LOD thresholds ranging from 5.3 to 10.0

with an interval of 0.1. The reference gene list stands for the pub-

lished inventory gene lists (Supplemental Table 6) containing all

the experimentally characterized or putatively annotated genes

related to the five metabolite classes (Kanehisa and Goto,

2000; Thimm et al., 2004; Fraser et al., 2007; Chan et al., 2011;

Saito et al., 2013). By comparing these two gene lists for each

tested metabolite class, we assessed the performance of our

two-condition GWAS by calculating precision, recall, and F-mea-

sure, three widely applied statistics for scoring metrics in pattern

recognition and information retrieval (Powers, 2011), and by

calculating the significance of overlap using LOD thresholds

ranging from 5.3 to 10.0. As shown in Figure 2, the stress

GWAS displayed higher precision, recall, F-measure, and more

significant enrichment p values in comparison with the control

GWAS across all the tested LOD thresholds, demonstrating the

merit of conducting GWAS in different environments in causal-

locus identification with increased accuracy and sensitivity, in

comparison with single-condition GWAS. In addition, all the
120 Molecular Plant 11, 118–134, January 2018 ª The Author 2017.
enrichment values for the overlap between the actual and refer-

ence gene lists were statistically significant for all five metabolite

classes when using the selected LOD threshold of 8.0, with the

exception of amino acids in the control condition.

Metabolite–Transcript Correlation-Network Analysis

Transcript data were obtained from our previous time-course

stress experiment (Caldana et al., 2011). The detailed

information about the experimental setup is provided under

‘‘Time-Course Stress Experiment’’ in Methods. In brief, wild-

typeA. thalianaColumbia-0 (Col-0) was exposed to eight environ-

mental conditions differing in light and temperature. Tempera-

ture- and light-stress treatments were conducted as follows:

aside from the control condition (21�C and 150 mE m�2 s�1,

abbreviated as 21-L), the plants were exposed to seven different

environmental conditions: (i) 4�C and darkness (4-D), (ii) 21�C
and darkness (21-D), (iii) 32�C and darkness (32-D), (iv) 4�C and

85 mE m�2 s�1 (normal light; 4-L), (v) 21�C and 75 mE m�2 s�1

(low light; 21-LL), (vi) 21�C and 300 mE m�2 s�1 (high light;

21-HL), and (vii) 32�C and 150 mE m�2 s�1 (normal light; 32-L).

We used the material harvested in this previous experiment to

perform an untargeted LC–MS metabolite profiling. Both metab-

olite and transcript data were used for correlation-network anal-

ysis. The detailed process of metabolite–transcript correlation-

network analysis, including selection of correlation thresholds,

condition-specific network construction, and network quality

evaluation, is provided in Supplemental Note 1.

Well-Characterized GenesWere Detected by GWAS and
Network Analysis

The integration of the two-condition-based GWAS and the

network analysis allowed the identification and refinement of 42

unique key trait–locus associations, in turn giving rise to 70 candi-

date genes known or putatively annotated as enzymes taking part

in metabolic processes (Supplemental Table 12). For these 70

candidate genes, we used 200K SNP data across accessions

in comparison with the Col-0 reference genome to detect poly-

morphic variants causing amino acid sequence change or trunca-

tion caused by the introduction of a premature stop codon

(Supplemental Table 13).

We briefly list examples of the major loci detected for well-

characterized secondary metabolites in Supplemental Note 2,

with one typical example, the OMT1 locus, combining GWAS,

network analysis, and metabolite annotation by isotope labeling

and MS/MS fragmentation analysis, described in the following

(Figure 3).

A metabolite feature (m/z 371.0985, retention time = 4.69,

negative mode) exhibited high positive correlations with candi-

date gene OMT1 (caffeic acid/5-hydroxyferulic acid O-methyl-

transferase, AT5G54160) in three darkness-related conditions

(Figure 3A). GWAS results indicated that this metabolite trait

was strongly associated with the genetic locus on chromosome

five harboring OMT1 (p = 1.51E-15) (Figure 3B). The metabolite

was putatively annotated as 5-hydroxyferulic acid glucoside

(5HFAG) based on isotope labeling, limiting the possible chemical

formula to C16H20O10 (Figure 3C and 3D), and based on public

database search (KNApSAck, Metabolome.JP, PubChem, and

KEGG) and MS/MS fragmentation profiles (Figure 3E). We



Figure 1. Summary of mGWAS Results Conducted in Two Different Environmental Conditions.
(A) Manhattan plots of mGWAS results with genetic associations at a genome-wide significance level of p % 5.01E-06 (LOD R 5.3). The strength of

association for known (top) and unknown (bottom) metabolites is indicated as the negative logarithm of the p values for the compressed mixed linear

model in the control (upper panel) and stress (bottom panel) conditions. All metabolite–SNP associations with p values below 5.01E-06 (horizontal dashed

line in all Manhattan plots) are plotted against genome location in intervals of 1 Mb. AA and NA ders, amino acid and nucleic acid derivatives.

(B) Venn diagram for the comparison of detected loci in GWAS for control and stress conditions using the selected LOD threshold of 8.0 (p % 1.0E-08).
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further validated the association between 5HFAG and OMT1

using omt1 mutants (Figure 3F). 5HFAG was significantly

decreased in Col-0 plants under stress condition, mimicking

our results in the time-course stress experiment (Figure 3A). In

parallel, OMT1 mutant plants displayed remarkably higher

levels of 5HFAG compared with Col-0 plants in both conditions

(Figure 3F). Additionally, a different metabolite feature,

putatively annotated as coumaric acid glucoside, also mapped

to the OMT1 locus, exhibiting metabolic behaviors similar to

that of 5HFAG in OMT1 mutant plants (Figure 3F). Although
M

OMT1 had already been characterized by recombinant protein

(Muzac et al., 2000) and knockout (KO) (Tohge et al., 2007)

analyses, our integrative approach further provides genetic and

co-regulation evidence for OMT1.
Identification and Experimental Validation of Novel
Associations

Aside from the well-characterized secondary metabolites

described above, we applied our integrative approach to the
olecular Plant 11, 118–134, January 2018 ª The Author 2017. 121



Figure 2. Statistical Analysis to Evaluate GWAS Performance in Different Environments Using Five Distinct Metabolite Classes.
Panels from left to right: precision, recall, F-measure, and p value of enrichment analysis.

Molecular Plant Mapping the Arabidopsis Metabolic Landscape
realm of unidentified metabolites. In doing so we discovered

novel associations involved in glycosylation, flavonoid meta-

bolism, and nicotinate metabolism.

AT3G55700, annotated as a UDP-glycosyltransferase superfam-

ily protein (UGT), was significantly associated with four unidenti-

fied metabolites (metabolites A–D) in the GWAS of both control

and stress conditions (Figure 4A). There are four SNP markers

in UGT (Figure 4B), giving rise to 12 haplotypes, which can be

further classified into three main clusters (Figure 4C). Based on

haplotype analysis, the levels of metabolite B show significant

differences between the three main clusters, exhibiting a

gradually increasing trend from cluster I to cluster III (Figure 4C)

(metabolite B serves as a representative for the other three

metabolites, whereby the other three metabolites also

demonstrate significant differences between the three clusters).

All four SNPs lead to amino acid substitutions, but only the

second SNP (m119016, A/T) clearly distinguishes cluster I from

clusters II and III, leading to a substitution from a polar amino

acid (serine) to a non-polar one (cysteine). This amino acid

substitution results in significant difference in the levels of

metabolite B (p = 1.33E-12) (Figure 4D). To further investigate

the importance of this residue, we compared the amino acid

sequence in A. thaliana with that from 16 other species,

including three Brassicaceae. We found serine to be conserved

in this position in all 16 species, indicating the importance of

this amino acid for the enzymatic activity that the candidate

gene (AT3G55700) encodes. This result also suggests that the

mutational event that led to cysteine in some Arabidopsis

accessions occurred after the formation of the A. thaliana

species. Next, we used two independent T-DNA insertion lines

to validate the association with UGT. The levels of metabolite A
122 Molecular Plant 11, 118–134, January 2018 ª The Author 2017.
were significantly increased in the two KO lines, whereas the

levels of metabolite B and metabolite C were undetectable, and

metabolite D had significantly decreased levels compared with

Col-0 plants (Figure 4E). Therefore, we propose a possible

reaction scheme in which metabolites A–D may be involved

(Figure 4E). Of note, residual levels of metabolite D in the KO

lines suggest possible gene redundancy or alternative

biosynthetic routes for this metabolite’s synthesis. Isotope-

labeling results indicate 13 and 12 for metabolite D and metabo-

lites B and C (the latter two sharing the same m/z), respectively.

The likely chemical formulae for metabolites B and C are

C13H24O9 and C13H24O9, and for metabolite D C12H22O9. Addi-

tionally, similar MS/MS fragmentation patterns were detected

for metabolites B, C, and D (Supplemental Figure 13),

suggesting that they share similar structures. Intriguingly, we

also observed that the m/z difference between metabolite A

and metabolites B and C is 162.0534, the characteristic

fragment loss of one hexose, usually from one glycoside to an

aglycone, further supporting the possible role of UGT as a

UDP-glycosyltransferase involved in glycosylation.

We additionally observed a metabolite feature (m/z 741.2220,

retention time = 6.29, positive mode) that mapped to a locus on

chromosome one harboring candidate gene BGLU1 (b-glucosi-

dase 1, AT1G45191) with high LOD scores of 8.78 and 10.22 in

control and stress conditions, respectively (Figure 5A). Lead

SNP m27661 and seven other significantly associated SNPs

are located in BGLU1. Among the eight SNP markers, three

lead to changes in the amino acid sequence. The first and last

polymorphism variants (C/G, m27656; C/A, m27663) result in

substitutions from non-polar to polar amino acids (Figure 5B).

The mapped metabolite is significantly different among the



Figure 3. Validation of the Integrative GWAS
and Network Analysis for OMT1 (Caffeic
Acid/5-Hydroxyferulic Acid O-Methyltrans-
ferase, AT5G54160).
(A) Detected positive correlations between the

unidentified metabolite and the candidate gene

OMT1 in three darkness-related conditions (4-D,

0.71; 21-D, 0.77; 32-D, 0.92).

(B)Manhattan plot displaying GWAS results for the

levels of the unidentified metabolite trait in the

control condition.

(C) Isotope-labeling results using 13C- and 15N-

labeled samples compared with a non-labeled

sample. A 16.0540 mass shift and no mass shift

are observed comparing 13C- and 15N-labeled

samples, respectively, with the non-labeled

sample.

(D) The process of narrowing down the scope of

possible chemical formulae for the unidentified

metabolite based on the isotope-labeling results.

Two possible formulae (C16H20O10 and C16H24-

Cl2F2O3) fit the constraints derived from the label-

ing (16 carbons, no nitrogen). Considering the

relative rarity of chlorine and fluorine in natural

products, the most plausible formula for this un-

identified feature was tentatively annotated as

C16H20O10.

(E) MS/MS fragmentation profiles and putative

annotation for the unidentified metabolite. The

observed neutral losses of 180 Da and 162 Da

indicate a hexose and an aromatic attachment in

themetabolite. The fragment ionm/z 176.0117was

speculated to be produced by loss of –CH3 from

the target metabolite. Based on the above frag-

mentation patterns, the metabolite was putatively

annotated as 5-hydroxyfuric acid glucoside.

(F) The phenylpropanoid pathway, in which the

candidate gene OMT1 and the mapped metabolite

traits (5-hydroxyferulic acid glucoside and cou-

maric acid glucoside) are involved, and the OMT1

knockout experiment conducted in the control (N)

and stress (S; 32�C + darkness) conditions. The

enzymes and their abbreviations are p-coumarate

3-hydroxylase (C3H), caffeate O-methyltransfer-

ase 1 (OMT1), and ferulate 5-hydroxylase (F5H).

Mapping the Arabidopsis Metabolic Landscape Molecular Plant
holotypic forms (Figure 5C). Furthermore, its levels decrease in

bglu1 (p = 6.55E-03; Figure 5D). This unidentified metabolite

feature shared the samem/z with the well-characterized flavonol

glycoside kaempferol 3-O-[200-O-(rhamnosyl) glucoside]-7-O-

rhamnoside (Tohge et al., 2005), but was considerably lower in

abundance. The two metabolites elute at different retention

times and exhibit different MS/MS fragmentation patterns,

although they share the same characteristic fragment ion 287,

representing the existence of a kaempferol backbone as

aglycone. Moreover, the consecutive observed losses of 146

Da, 146 Da, and 162 Da indicate the attachment of two deoxy-

hexoses and one hexose to the kaempferol skeleton of the map-

ped metabolite (Figure 5E). This unknown metabolite feature also

co-mapped to the well-characterized locusUGT78D1, catalyzing

the transfer of UDP-rhamnose to the 3-OH position of kaempferol

and quercetin (Jones et al., 2003). This co-mapping observation
M

further supported the attachment of deoxy-hexoses and hexose

to the kaempferol backbone. Although the final identification of

this unknown metabolite for its sugar types and exact positions

of sugars is yet to be achieved, this example demonstrates the

likely presence of the unidentified minor flavonol glycoside, and

that BGLU1 is likely involved in the flavonol glycosylation

pathway.

Three unknown metabolite features (named metabolites 1–3)

were significantly associated with two related candidate genes,

namely BGLU7 (b-glucosidase 7, AT3G62740) and BGLU8

(b-glucosidase 8, AT3G62750) (Supplemental Figure 14A).

Besides BGLU7 and BGLU8, metabolites 1 and 2 additionally

co-mapped to the well-studied UGT78D1 locus, a UDP-

rhamnose transferase active at the 3-OH position of kaempferol

and quercetin (Jones et al., 2003). With differentiating genetic
olecular Plant 11, 118–134, January 2018 ª The Author 2017. 123



Figure 4. Functional Identification of the Candidate Associations between UGT (UDP-Glycosyltransferase, AT3G55700) and Four
Unknown Metabolites (Metabolites A–D).
(A)Manhattan plot ofmetabolite A in the stress condition as the representative for the other three co-mappedmetabolite traits (metabolites B–D). pValues

are shown on a log10 scale; the x axis shows the physical positions on five chromosomes inA. thaliana. p = 3.36E-10, 6.39E-08, 4.59E-11, and 4.24E-07 in

the control condition, and p = 7.23E-13, 7.20E-09, 5.16E-08, and 4.56E-07 in the stress condition for the four metabolites, respectively.

(B) Gene model of AT3G55700. Filled black boxes represent coding sequence. The light-gray vertical lines mark polymorphic sites identified by high-

throughput genotyping; stars represent the SNP markers resulting in changed amino acid sequence.

(C) Haplotype analysis for four SNPs genotyped in UGT. Haplotypes were clustered to three main groups according to their sequence similarities based

onWard’sminimum variancemethod (upper panel). Box plots show the intensity ofmetabolite B for these three different clusters (middle panel; boxwidth

represents number of accessions in each cluster) and for the various haplotypes (bottom panel). One-way ANOVA was applied to detect differences

between cluster means, followed by Bonferroni’s correction for multiple comparisons (p = 2.29E-20).

(D) The levels ofmetabolite B are significantly different between the accessions divided by the different amino acid residues (serine and cysteine) resulting

from the proposed functional site (the second SNP marker in UGT, m119016, A/T) (p = 1.33E-12).

(E) Proposed chemical scheme that the four mapped metabolite traits (metabolites A–D) are involved in and the changed levels of metabolites A–D in the

loss-of-function mutant experiment using two independent KO lines (SALK_096355 and SALK_046282).
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regulations, Metabolite 3 co-mapped to the UGT79B2 and

UGT79B3 locus, recently reported as UDP-rhamnose transfer-

ases using cyanidin and cyanidin 3-O-glucoside as acceptors

(Li et al., 2016). We observed concomitant metabolic changes

for these three traits in three independent KO lines for BGLU7

and BGLU8 (Supplemental Figure 14B). In addition, we noted

that metabolites 1 and 2 shared the same m/z with the well-

characterized kaempferol 3-O-[200-O-(rhamnosyl) glucoside]-7-

O-rhamnoside (K3RG7R) (Tohge et al., 2005). Taken together,

the above evidence led us to predict two different reaction

schemes in which these three associations may be involved

(Supplemental Figure 14B).

A strong link between an unknownmetabolite trait (m/z 256.0810,

retention time = 1.05) and the candidate gene GC1 (guanylyl

cyclase 1 [Wong and Gehring, 2013], AT5G05930) was

supported by both GWAS (Supplemental Figure 15A) and

network analysis in 21-D and 32-D conditions (Supplemental

Figure 15B). In GC1, two SNPs (m164251, G/T, lead SNP;
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m164253, C/A) result in an altered protein amino acid sequence

(Supplemental Figure 15C). Together with the results from

linkage disequilibrium (LD) (Supplemental Figure 15D) and

haplotype (Supplemental Figure 15E) analyses, this finding

suggests that these polymorphic variants are likely to constitute

the functional variation underlying this association. Isotope-

labeling results suggested the possible chemical formula

C11H13NO6 (Supplemental Figure 15F). Assaying the standard

compound nicotinate D-ribonucleoside revealed that it shares

the same MS/MS fragmentation pattern as our metabolite

(Supplemental Figure 15G), albeit with a slight retention-time

shift, suggesting that our metabolite is structurally highly similar

to nicotinate D-ribonucleoside.

Besides the novel associations described above, we also

detected two additional associations involved in tyrosine

degradation and glucosinolate biosynthesis derived from

branched-chain amino acids. Using mutant analysis, we provide

new insights into these two well-studied pathways. A detailed



Figure 5. An Exemplary Association Found by GWAS between BGLU1 and the Metabolite Trait Proposed as a Flavonol Glycoside.
(A) Manhattan plot for the unidentified metabolite trait and the significant association signals in the stress condition (p = 5.98E-11).

(B) Gene model of BGLU1, stars represent the SNP markers resulting in changed amino acid sequence.

(C) Haplotype analysis for eight SNPs genotyped in candidate gene BGLU1. Metabolite-trait levels are significantly different among the three main

clusters based on haplotype sequence similarity (p = 1.06E-19).

(D) Metabolite changes for the unidentified metabolite trait in the KO experiment (p = 6.55E-03).

(E) MS/MS fragmentation analysis for the metabolite trait. The characteristic fragment ion 287 represents the existence of a kaempferol backbone as

aglycone. The consecutive losses of 146Da, 146Da, and 162Da indicate the attachment of twodeoxy-hexoses and one hexoseon the kaempferol skeleton.
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analysis of these two associations is described in Supplemental

Note 3.
Gene–Environment Interplay Leads to Discovery of
Novel Associations

We detected somemetabolite–locus associations specific to one

of the GWAS conditions tested (Figure 1B), and highlighted

several of such cases in the following subsections.

Saccharopine Specifically Accumulates due to the

Activation of LKR/SDH in Darkness

We detected a strong association between saccharopine

(confirmed by authentic standard) and the LKR/SDH locus

(saccharopine dehydrogenase; AT4G33150), involved in lysine

degradation (Zhu et al., 2001; Serrano et al., 2012), only in

the stress condition (Figure 6A). In our time-course stress

experiment, saccharopine exclusively accumulated in the low-

light- or darkness-related conditions (21-D, 21-LL, and 32-D),

but was absent in other conditions (Supplemental Figure 18),

which accounts for the lack of mapping results for
M

saccharopine in the control condition. Lead SNP m156605 is

in a high LD with SNP m156606 (r2 > 0.90, p < 0.0001)

(Figure 6B), leading to an amino acid substitution from

phenylalanine to leucine. We used lkr/sdh mutants to

investigate whether the function of LKR/SDH is specifically

triggered under stress. Saccharopine was not detected in the

control condition (Figure 6C). In the stress condition,

saccharopine was notably increased in Col-0 plants, consistent

with our time-course stress results; in parallel, significantly lower

levels were detected in the lkr/sdh mutant (p = 7.89E-05)

(Figure 6C). The expression profiles of LKR/SDH in the time-

course stress experiment show increasing trends in 21-D and

32-D conditions (Supplemental Figure 19). This finding

suggests that the route of lysine degradation in which LKR/

SDH is involved is a non-essential pathway under standard con-

ditions, in line with the previous publication (Zhu et al., 2001), but

may be activated under stress conditions (Figure 6D). However,

saccharopine was not completely depleted in the lkr/sdh

KO (Figure 6C), which may indicate gene redundancy or

alternative pathways that can also produce this metabolite.
olecular Plant 11, 118–134, January 2018 ª The Author 2017. 125



Figure 6. A Representative Association Involved in Lysine Catabolism Discovered by GWAS Conducted in Two Different
Environments.
(A) Manhattan plot for the metabolite trait saccharopine in the stress condition (p = 2.60E-11).

(B) Linkage disequilibrium (LD) plot for the locus associated with saccharopine levels on a zoomed-in Manhattan plot. The x axis shows the physical

positions in this LD block on chromosome 4 and the y axis shows the significance levels with p values on a log10 scale. Each gray block denotes a gene in

the locus to which the unknown metabolite trait mapped. Each dot serves as one SNP marker, with the lead SNP (with highest LOD) shown as a red

diamond. Imputation revealed several closely located SNPs in strong LD (r2) with the lead SNP.

(C) KO experiment with lkr/sdhmutants conducted in the control (21�C light) and stress (32�C + darkness) conditions. Saccharopine lacked completely in

Col-0 and lkr/sdhmutants in the control condition. In the stress condition, saccharopine accumulated in Col-0 plants, but was significantly decreased in

lkr/sdh mutant plants compared with Col-0 plants (p = 7.89E-05).

(D) The lysine degradation pathway in which the candidate association between saccharopine and LKR/SDH is involved.

Molecular Plant Mapping the Arabidopsis Metabolic Landscape
An Improved Mapping Signal in Stress Condition Leads to

the Discovery of an Adenylosuccinate Lyase

Differential levels of significance for an association between

succinoadenosine and AT4G18440 (putatively annotated as

an adenylosuccinate lyase) were detected in the control and
126 Molecular Plant 11, 118–134, January 2018 ª The Author 2017.
stress conditions (control, p = 2.29E-06; stress, p = 1.70E-10)

(Figure 7A). Haplotype analysis showed that accessions sharing

haplotypes ‘‘GCAG’’ and ‘‘GGAG’’ featured significantly lower

levels of succinoadenosine than accessions of the other four

haplotypes (p = 5.17E-07) (Figure 7B). The mapped metabolite



Figure 7. An Improved Mapping Signal in Stress Condition Leads to the Discovery of an Adenylosuccinate Lyase.
(A) The metabolite trait succinoadenosine has different genetic regulations in the control and stress conditions shown by the Manhattan plots (control,

p = 2.29E-06; stress, p = 1.68E-10).

(B) Haplotype analysis for four SNPs genotyped in candidate gene AT4G18440. The levels of succinoadenosine differ significantly among the six groups

of accessions distinguished by the different haplotypes.

(C) The annotation of the metabolite trait as succinoadenosine was confirmed with authentic standard by comparing the retention time and MS/MS

fragmentation pattern.

(D) KO plants (SALK_099350) for candidate gene AT4G18440 show significant increased levels of succinoadenosine in comparison with Col-0 plants

(p = 5.34E-10).

(E) The purine nucleoside pathway in which the candidate association between succinoadenosine and AT4G18440 is involved.
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was confirmed as succinoadenosine based on accurate

mass, labeling results, and MS/MS fragmentation analysis,

as well as by comparison with a standard compound

(Figure 7C). Furthermore, we confirmed the association by

metabolic profiling of a KO line, exhibiting significantly higher

succinoadenosine levels (p = 5.34E-10) (Figure 7D). Based on

our results and the gene’s putative annotation, we suggest that

AT4G18440 is involved in purine nucleotide metabolism,

catalyzing the conversion of adenylosuccinate to AMP rather

than acting directly on succinoadenosine (Figure 7E).
M

DISCUSSION

Recent years have witnessed the successful application of

mGWAS to Arabidopsis (Kliebenstein et al., 2002; Keurentjes

et al., 2006; Hansen et al., 2008; Chan et al., 2010a,

2010b, 2011; Routaboul et al., 2012; Angelovici et al., 2013; Li

et al., 2014; Bac-Molenaar et al., 2015; Ishihara et al., 2016;

Wu et al., 2016) and crop species (Riedelsheimer et al., 2012; Li

et al., 2013; Chen et al., 2014; Sauvage et al., 2014; Wen et al.,

2014; Matsuda et al., 2015). However, most of these studies,
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especially those in Arabidopsis, largely focused on one or

several classes of target metabolites. In this study, we applied

a comprehensive untargeted metabolomics-based GWAS

approach with high coverage, sensitivity, and accuracy to simul-

taneously detect thousands of semi-polar metabolite features,

mainly focusing on secondary metabolites, in a collection of

309 A. thaliana accessions, grown under two different environ-

mental conditions, thus facilitating the discovery of 123 robust

mQTLs with the selected LOD threshold of 8.0 (p % 1.0E-08)

(Figure 1B). Interestingly, different from our previous published

observation that natural variation in Arabidopsis primary

metabolites tends to be controlled by a large number of small-

effect loci (Wu et al., 2016), here we found several major large-

effect loci alongside a vast number of small-effect loci for

variation of secondary metabolites. This observation is highly

consistent with previous results (Chan et al., 2011) and is

likely caused in part by the more linear/hierarchical genetic

architecture of some secondary metabolites in comparison with

the intricate and multi-layered regulation inherent in primary

metabolism (Chen et al., 2014). However, it may also reflect

the highly enriched diversity of secondary metabolites, both

qualitatively and quantitatively (Rowe et al., 2008; Keurentjes,

2009; Chan et al., 2010a; Joseph et al., 2013).

Plants facing environmental challenges undergo remarkable re-

programming of their transcriptomes and metabolomes. Several

pioneering GWAS have taken different environments into account

(Chan et al., 2011; Korte et al., 2012; Davila Olivas et al., 2016).

Chan et al. (2010a), focusing mainly on primary metabolites,

successfully applied untargeted GC–MS-based metabolomics

on a GWAS panel to investigate the influence of environmental

variation on genetic architecture. Therefore, the application of a

systems-based approach in this vein to secondary metabolites

for the improvement of causal-locus identification in a non-

biased manner remains lacking. Given that a vast number of sec-

ondarymetabolites are only produced under conditions of (a)biotic

stress, it follows that comparing the genetic regulation of plant

metabolism in different environments can accelerate the discovery

of the novel metabolic pathways and signaling mechanisms that

are involved in the complicated gene-by-environment interactions

tailoring the plants’ adaptive responses to stresses.

The two-condition-based GWAS allowed us to obtain a total of

123 robust mQTLs (LOD R 8.0), 24.39% of which were specific

to one of the environmental conditions (mQTL only detected in

one specific condition; or detected in both conditions but with

DLOD > 3). Furthermore, our statistical analysis (Figure 2) for

five different metabolite classes demonstrated that conducting

GWAS in different environments strongly enhanced the

discovery of causal genes with increased accuracy and

sensitivity, in comparison with single-condition GWAS. Of note,

not every secondary metabolite can be induced under specific

growth conditions; thus our study illustrates the importance of

exploring the influence of different conditions (e.g., stresses, tis-

sues, development stages) on plant natural variation, providing

multiple dimensions of biological insight.

In parallel, the integration of additional forms of genome-scale

data derived from our time-resolved stress experiment was

applied to directly detect metabolite‒gene correlations. The sub-

sequent integration of the two-condition-based GWAS and the
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independent network analysis using different environments al-

lowed us to provide a global landscape of Arabidopsis meta-

bolism in three dimensions: genome, metabotype, and environ-

ments (Figure 8).

Our strategy facilitates the discovery of novel and underexplored

candidate associations. We found in this study several novel as-

sociations related to glycosylation. Glycosylation enhances the

solubility of aglycones, and thus is likely to be essential for their

synthesis, transport, and storage in their final destination in the

vacuole or cell wall (Ishihara et al., 2016). The widest use of

glycosylation identified in Arabidopsis so far is involved in

flavonoid modification by flavonol glycosyltransferase (GT)

(Yonekura-Sakakibara and Hanada, 2011; Hectors et al., 2014).

So far several Arabidopsis GTs have been identified, largely by

transcriptome co-expression networks, then functionally charac-

terized by loss-of-function mutants or recombinant-protein as-

says (Tohge et al., 2005; Yonekura-Sakakibara et al., 2007,

2008, 2012). Some of them were also detected in our GWAS: a

flavonol 3-O-rhamnosyltransferase (UGT78D1), a flavonoid 3-O-

glucosyltransferase (UGT78D2), a flavonol 3-O-glucoside, 600-O-

glucosyltransferase (BGLU6), and UDP-glycosyltransferases

acting on cyanidin and cyanidin 3-O-glucoside (UGT79B2 and

UGT79B3). In addition to the aforementioned genes, we discov-

ered several hitherto non-reported associations involved in

glycosylation: the candidate gene AT3G55700with four unknown

metabolites, and BGLU1, BGLU7, and BGLU8 with minor

flavonol glycosides. Metabolite identification is one of the bottle-

necks in untargeted metabolomic studies. Although the state-of-

the-art isotope-labeling experiment and MS/MS fragmentation

analysis we applied in this study have provided valuable insights

into possible formulae or structures for these unknown metabo-

lites, further structural confirmation regarding the sugar donors

and the exact sugar positions in the glycosides needs to be

undertaken. Of note, our genetic evidence and the loss-of-

functionmutant results indicate the likely presence of unidentified

minor (flavonol) glycosides. It seems highly likely that these

related candidate genes encode the decoration enzymes in

their formation (Figures 4 and 5). Our findings thus lead to a

more complete understanding of the glycosylation process in

Arabidopsis, facilitating the reconstruction of biosynthetic

pathways, which may in turn benefit metabolic engineering of

nutritionally important compounds in plants.

The association between saccharopine, a product of lysine

degradation, and LKR/SDH was only identified by applying

GWAS in the stress environment. In agreement with our time-

course stress experiment, we observed significantly higher lysine

levels in the 21-D and 32-D stress conditions (Supplemental

Figure 20), whereas saccharopine was exclusively accumulated

in 21-LL, 21-D, and 32-D stress conditions but was absent in all

other conditions, including 21-L (Supplemental Figure 18).

Moreover, LKR/SDH expression showed enhanced levels in

the 21-D and 32-D conditions (Supplemental Figure 19).

Our KO results (Figure 6C) proved the association between

saccharopine and LKR/SDH as reported previously (Zhu et al.,

2001), and further dissected the environmental regulation of the

gene activity. It is well documented that lysine degradation in

plants serves as a stress-associated metabolic pathway (Galili

et al., 2001). This example not only to a large extent increases

our understanding of the vital role of lysine degradation related



Figure 8. AGlobalArabidopsisMetabolic Landscape at Three-Dimensional View (Genome,Metabotype, and Environments) Basedon
an Integrative Approach Combining Untargeted Metabolomics-Based GWAS and Network Analysis.
In red are key candidate genes that were detected in both control and stress conditions; in purple are key candidate genes that were detected only in one

condition.Without underline: key candidate genes thatwere previously characterized and alsodetected in this study; underlined: previously uncharacterized

genes first described in this study. The putatively proposed reactions are in gray. Metabolites are abbreviated as follows: DAHP, 3-deoxy-D-arabino-

heptulosonic acid 7-phosphate; 2,3-DHBA, 2,3-dihydroxybenzoic acid; 2,5-DHBA, 2,5-dihydroxybenzoic acid; 2,3-DHBAX, 2,3-dihydroxybenzoic acid

5-O-b-D-xyloside; 2,5-DHBAX, 2,5-dihydroxybenzoic acid 5-O-b-D-xyloside; 2,3-DHBAG, 2,3-dihydroxybenzoic acid 5-O-b-D-glucoside; 2,5-DHBAG,

2,5-dihydroxybenzoic acid 5-O-b-D-glucoside; NRN, nicotinate D-ribonucleoside; GLS, glucosinolates; 1MO-I3M-GLS, 1-methoxy-3-indolylmethyl-glu-

cosinolate; 4MO-I3M, 4-methoxy-3-indolylmethyl-glucosinolate; F3G, flavonol 3-O-glucoside; F3G7R, flavonol 3-O-glucosyl-7-O-rhamnoside; F3GG7R,

flavonol 3-O-glucosyl-glucoside 7-O-rhamnoside; K3RRG, kaempferin 3-O-rhamnosyl-rhamnosyl-glucoside. Genes are abbreviated as follows: DES1,

L-cysteine desulfhydrase 1;CYSD2, cysteine synthase D2;BCAT, branch-chain aminotransferase; LKR/SDH, lysine-ketoglutarate reductase/saccharopine

dehydrogenase; GC1, guanylyl cyclase 1; MAM, methylthioalkylmalate synthase; AOP2, alkenyl hydro alkyl producing 2; AOP3, alkenyl hydro alkyl pro-

ducing 3; TyrDC, tyrosine decarboxylase; CYP81F4, cytochrome P450, family 81, subfamily F, polypeptide 4; CYP81F2, cytochrome P450, family 81,

subfamily F, polypeptide 2; PAL, phenylalanine ammonia-lyase; UGT89A2, UDP-glycosyltransferase 89A2; OMT1, caffeate O-methyltransferase 1; SST,

sinapoyl-Glc:sinapoyl-Glc sinapoyltransferase; SMT, sinapoyl-Glc:malate sinapoyltransferase; CAD, cinnamyl alcohol dehydrogenase; 4CL, 4-coumarate-

CoA ligase; CHI, chalcone isomerase; DFR, dihydroflavonol reductase; FLS, flavonol synthase; UGT79B2, UDP-glycosyltransferase 79B2; UGT79B3,

UDP-glycosyltransferase 79B3; UGT78D2, UDP-glycosyltransferase 78D2; UGT78D1, UDP-glycosyltransferase 78D1; BGLU6, b-glucosidase 6; BGLU1,

b-glucosidase 1; BGLU7, b-glucosidase 7; BGLU8, b-glucosidase 8.
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with plants’ adaptive responses to the stresses, but also

manifests the merit of conducting GWAS in different

environments.

In summary, we present here an untargeted metabolomics-

based GWAS conducted under two different environmental con-

ditions. Our two-condition-based GWAS for more than 3000

semi-polar metabolites (mainly secondary metabolites) resulted

in the detection of 123 highly resolved mQTLs, 24.39% of which

were environment specific, with a LOD threshold of 8.0. The sta-

tistical analysis demonstrated that conducting GWAS in different

environments largely boosted the discovery of causal genes with

enhanced accuracy and sensitivity. In parallel, metabolite‒tran-

script correlation-network analysis was applied as a further filter

to cross-validate with the two-condition-based GWAS. The com-

bined approach promotes the selection of candidate associa-

tions and provides functional and biological insights into the

holistic landscape of Arabidopsis metabolism, mainly focusing

on secondary metabolism. Based on the integrative approach,

we screened 42 key trait‒locus associations, resulting in 70

candidate genes, not only including the ones involved in well-

characterized secondary metabolite biosynthesis but also
M

shedding light on novel, previously uncharacterized connections.

Using mutant plants we validated eight of the novel associations,

including two with differential genetic regulations, involved in

lysine degradation and purine nucleotide metabolism, detected

in two GWAS environments. To the best of our knowledge, this

is the first report to implement an untargeted metabolomics-

basedGWAS, aswell as network analysis of a time-course exper-

iment, both conducted in different abiotic environments, to

comprehensively select and prioritize candidate associations in

the realm of global Arabidopsis secondary metabolism. In addi-

tion, we were able to provide a considerably broader GWAS of

Arabidopsis secondary metabolism than has been presented to

date and, hence, to compare and contrast the genetic architec-

ture of constitutive ‘‘housekeeping’’ and inducible ‘‘defense’’

metabolites.
METHODS

Plant Materials

Time-Course Stress Experiment

Time-resolved stress experiments using different light and temperature

conditions were conducted in a previous study (Caldana et al., 2011). In
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brief, wild-type A. thaliana Col-0 was grown in soil (potting compost) in

short days (8 h light) for 4 weeks, then transferred to long days (16 h light)

at day/night temperature of 21�C/18�C for 2 weeks. Temperature- and

light-stress treatments were conducted as follows: aside from the control

condition (21�C and 150 mEm�2 s�1, abbreviated as 21-L), the plants were

exposed to seven different environmental conditions: (i) 4�C and dark-

ness (4-D), (ii) 21�C and darkness (21-D), (iii) 32�C and darkness (32-D),

(iv) 4�C and 85 mE m�2 s�1 (normal light; 4-L), (v) 21�C and

75 mE m�2 s�1 (low light; 21-LL), (vi) 21�C and 300 mE m�2 s�1 (high light;

21-HL), and (vii) 32�C and 150 mEm�2 s�1 (normal light; 32-L). It should be

noted that a reduced light intensity of 85 mEm�2 s�1 was used in conjunc-

tion with the 4�C treatment to prevent a secondary stress caused by

excess light (Bieniawska et al., 2008). The 4�C condition can therefore

not be regarded as merely different in temperature compared with the

21-L or 32-L conditions.

Plant material was sampled at 20-min intervals for a total of 360 min to

yield a 19 data-point linear series (including 0 min). Additional samples

were taken after 5, 10, 640, and 1280 min to obtain 10 data points

(including 0 min) in a logarithmic time series. For each condition and

each time point, three independent plants were sampled and analyzed

for metabolites and transcripts.

Natural Population and Stress Experiment

A previously described diverse collection of 314 natural A. thaliana acces-

sions was used tomeasure secondarymetabolites for GWASwith existing

SNP data (Li et al., 2010; Horton et al., 2012). Seeds were sown directly to

soil in 6-cm pots for each ecotype, and stratified at long-day with cold-

night condition (16 h LD, 250 mE m�2 s�1 at day/night temperature of

20�C/6�C and humidity 60%/75%). After 2 weeks, the seedlings were

pricked to separate pots with six replicates for each accession. The plants

then grew in short days (8 h light) for another 2 weeks. Climate in the cul-

ture room was converted to long-day condition (16 h light) for the next

2 weeks. Plants were placed randomly to avoid block effects during

growth. All plants were watered daily for 5 min with 1/1000 Hyponex solu-

tion (Hyponex, Osaka, Japan), and the trays with plants were rotated hor-

izontally every 2 days to prevent positional light effects.

To investigate the influence of the abiotic stress that the plants were

exposed to in the aforementioned dynamic time-course stress experiment

(Caldana et al., 2011), we chose the most severe stress (32�C + darkness)

among all abiotic stresses to conduct the stress experiment on the natural

panel of 309 A. thaliana accessions. We randomly divided six plant

replicates for each accession to two equal groups, one remaining in the

control untreated condition (16 h light, 150 mE m�2 s�1 at day/night

temperature of 20�C/16�C and humidity 60%/75%, abbreviated as

control condition), and the other exposed to stress (darkness,

temperature of 32�C and humidity 75%, abbreviated as stress

condition) for 1280 continuous minutes, completely mimicking the

stress condition in our previous time-course stress experiment (Caldana

et al., 2011). At 42 days post germination, plants from the control group

were harvested within 1 h, starting 4 h after the beginning of the light

period in random order to minimize any variation due to harvest order.

Next, after 1280min of stress treatment, the stress-group plants were har-

vested within 1 h. For both conditions, three independent plants were

pooled together to make one biological replicate of each sample, and

frozen in liquid nitrogen. All the samples were stored at �80�C until sub-

sequent LC‒MS metabolite profiling.

Knockout Mutant Lines: Selection, Genotyping, and Growth

Conditions

A. thaliana Col-0 (wild-type) plants were used as control throughout the ex-

periment. We obtained 11 SALK lines, one SAIL line, and one GABI line

from the Arabidopsis Stock Center, with T-DNA insertions in the following

genes: UGT89A2 (AT5G03490; SALK_081110 and SALK_085860),

TyrDC (AT4G28680; SALK_106437, SALK_135982, SALK_120028,

and SALK_090725), BGLU1 (AT1G45191; SALK_060948), AT3G55700

(SALK_096355 and SALK_046282), BGLU7 (AT3G62740; GABI_612_C01),
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BGLU8 (AT3G62750; SALK_036368 and SAIL_731_D02), and AT4G18440

(SALK_099350). Knockout lines were selected on plates supplemented

with kanamycin for SALK lines, BASTA for SAIL lines, and sulfadiazine for

GABI lines. Non-segregating homozygous lines were then genotyped.

Left primer (LP), right primer (RP), and border primer (BP) were designed

using the Primer Design Tool provided by the Salk Institute Genomic

Analysis Laboratory (http://signal.salk.edu/tdnaprimers.2.html) and used

for PCR analysis to assay for the presence of the T-DNA and for

zygosity in the offspring of the delivered seeds. qPCR analysis of the

mutant lines was performed with gene-specific primers. All the primers

used in this study are listed in Supplemental Table 14. All of the T-DNA

insertion mutants were demonstrated to have completely knocked out

the expression of the gene.

Knockout lines and control plants (Col-0) were grown, 12 biological repli-

cates from each line, in short-day condition for 4 weeks, then transferred

to long-day condition for another 2 weeks. Next, we randomly divided

the plants into two equal groups, one remaining in control untreated con-

dition and the other exposed to stress (32-D) for 1280 continuousminutes,

mimicking the stress condition in the time-course stress experiment. The

rosettes of all plants in normal and stress conditions were harvested and

frozen in liquid nitrogen, then stored at �80�C until subsequent LC–MS

measurement.

Untargeted Metabolite Profiling by Liquid Chromatography–
Mass Spectrometry

Semi-polar metabolite extraction and measurement from A. thaliana

leaves using LC–MS were performed as described by Giavalisco et al.

(2011). In brief, approximately 100 mg of frozen Arabidopsis rosettes

were homogenized twice for 1 min at maximum speed using a

Retschmill (MM 301, Retsch, http://www.retsch.com). The metabolites

were extracted in 1 ml of a homogeneous mixture of pre-cooled meth-

anol/methyl-tert-butyl-ether/water (1:3:1), with shaking for 10 min at

4�C. This was followed by another 10 min of incubation in an ice-cooled

ultrasonication bath. The homogenate was then supplemented with

650 ml of UPLC-grade methanol/water (1:3), and was vortexed and spun

for 5 min at 4�C. The addition of methanol/water resulted in a phase sep-

aration, with the polar and semi-polar metabolites in the lower aqueous

phase. The separate phase was isolated and dried down in a SpeedVac

and stored at �80�C until subsequent LC–MS analysis. LC–MS data

were obtained using a Waters Acquity UPLC system (Waters, http://

www.waters.com), coupled to an Exactive mass spectrometer (Thermo

Fisher, http://www.thermofisher.com). Instrumental settings were previ-

ously described (Giavalisco et al., 2011). Chromatograms from the

UPLC–FT/MS runs were analyzed and processed with REFINER

MS 10.0 (GeneData, http://www.genedata.com). Molecular masses,

retention times, and associated peak intensities for each sample were

extracted from the .raw files. The chemical noise was subtracted

automatically. The chromatogram alignments were performed using a

pairwise alignment-based tree usingm/zwindows of five points and reten-

tion-time windows of five scans within a sliding frame of 200 scans. The

further processing of the MS data included isotope clustering, adduct

detection, and library search. Resulting data matrices with peak ID, reten-

tion time, and peak intensities in each sample were generated. Day-

normalization and sample-median-normalization were conducted, and

the resulting data matrices were used for further analysis.

Metabolite Annotation and Identification

To facilitate the annotation of detected metabolite features by our

comprehensive metabolomics approach, we obtained accurate m/z and

retention time of each metabolite feature. Considering that the annotation

of all the detected metabolite features is beyond the scope of this study,

we only focused on metabolite features that were biologically interesting.

We first checked each metabolite feature in the chromatograms of 13C-,
15N-, and 34S-labeled Arabidopsis Col-0 leaves, described previously

(Giavalisco et al., 2011), to narrow down the possible elemental formula.

http://signal.salk.edu/tdnaprimers.2.html
http://www.retsch.com
http://www.waters.com
http://www.waters.com
http://www.thermofisher.com
http://www.genedata.com
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The result matrix of isotope-shifted secondary metabolite data is provided

in this previous publication. Next, for each target metabolite feature, a

fragmentation pattern was obtained by running the analysis under Data

Dependent tandem mass spectrometry Top-3 MS/MS mode using the

normalized collision energy 25. The metabolite information, including ac-

curate m/z, possible chemical formula, and the fragmentation pattern,

was searched against different databases (PubChem, ChemSpider,

KEGG, METLIN, MassBank, HMDB, and KNApSAcK). Based on the puta-

tive annotation, commercially available standards were purchased and

analyzed using the same profiling procedure as described above. By

comparing the accurate m/z, retention time, and the fragmentation pat-

terns with the standards, the annotation for the key metabolite traits that

were in the candidate associations was confirmed. For the metabolites

that could not be identified by available standards, their putative annota-

tion was obtained with the best matches for the possible structures by

searching the aforementioned databases and the literature.

Metabolite datasets in positive and negative ionization modes were

merged to single datasets in the control and stress conditions, following

the method proposed by Calderón-Santiago et al. (2016). Next, we

grouped together the metabolite features that are actually derived from

the same metabolite to generate unique metabolites based on the

following criteria: (i) tolerance of mass difference as 5 ppm; (ii) retention-

time tolerance as 0.05 min; (iii) correlation between metabolite features

across all accessions higher than 0.90.
Genome-wide Associations

Population-Structure Analysis by Metabolomics

PCA was used to infer the structure of the diverse worldwide A. thaliana

population. After exclusion of five accessions that had poor germination

from a total of 314 A. thaliana accessions, the data matrix was generated

from 309 A. thaliana varieties and 4182 and 3968 detected metabolite fea-

tures in control and stress conditions, respectively. PCA for metabolite

profiles in control and stress samples was conducted to also show the in-

fluence of stress conditions on the natural panel of A. thaliana accessions.

Statistical Analysis of Metabolic Traits

Fold-change values were calculated independently for each metabolite

feature in the control and stress datasets, using the maximal intensity to

divide the minimal intensity of a given metabolite feature across all the

used accessions. Broad-sense heritability (H2) was calculated using the

following equation by treating genotype and environment as random ef-

fects, applying a mixed linear model: H2 = var(G)/(var(G) + var(E)), where

var(G) and var(E) represent the variance derived from genotypic and envi-

ronmental effects, respectively, adapted from Chen et al. (2014).

Data Acquisition for GWAS and Mapping

200K SNP data for 309 A. thaliana accessions, obtained using Affymetrix

GeneChip Array 6.0, were taken from previous publications (Li et al., 2010;

Horton et al., 2012). Metabolic profiling was performed using LC–MS as

described above. To avoid spurious false-positive associations due to

small sample sizes, we included in the data preprocessing only metabolic

traits with non-missing values across at least 50% of the accession sam-

ples. Following this initial quality control, 4182 and 3968 metabolite fea-

tures were detected for control and stress conditions. Metabolite inten-

sities were log-transformed. Genome-wide association analysis for

metabolite traits was performed using 199 455 SNPs with minor allele fre-

quency >1% across 309 accessions to investigate the associations be-

tween metabolite traits and SNPs. At each of these SNPs, a compressed

mixed linear model (Zhang et al., 2010) was fitted for each trait in the

Genome Association and Prediction Integrated Tool (GAPIT) R package

(Lipka et al., 2012). This model includes principal components as fixed

effects to account for population structure (commonly called the ‘‘Q’’

matrix) (Price et al., 2006), and a kinship matrix (commonly called the

‘‘K’’ matrix) (Eu-Ahsunthornwattana et al., 2014) to account for family

relatedness across the accessions. The SNP fraction parameter was set

to 0.1 to avoid excessive computation, as recommended by the GAPIT

user manual. Other parameters were set to default values.
M

Locus Identification

The following procedure was applied to identify genomic regions

associated with metabolite traits. First, all the SNPs with LOD value >

�log10(1=N) (N is the number of SNPs used in the study) were extracted

as described previously (Wen et al., 2014). LOD threshold was set at 5.3

by using this method. The resulting SNPs with LOD R 5.3 were then

assigned to the same group if the genomic distance between them was

less than 10 kb. Finally, all the genes within the resulting groups were

taken into account as putative candidates.

mQTL Comparison

To find environment-specific mQTL, for a certain metabolite trait we

compared mQTL from the control and stress conditions. Two resulting

loci were regarded as identical if the genes in these two loci shared

more than 70% overlap.

Linkage Disequilibrium Analysis

To assist in identification of causal genes in the mapped genomic regions

for a given metabolite trait, we calculated the correlations between each

SNP marker in the mapped locus and the lead SNP (with highest LOD)

to determine LD block.

Performance Evaluation of GWAS Conducted in Different

Environments

We used five distinct metabolite classes (glucosinolates, flavonoids, phe-

nylpropanoids, amino acids, and amines) to evaluate and compare the

performance of GWAS in the two different environments. We first gener-

ated the reference gene lists (Supplemental Table 5) containing all the

experimentally characterized or putatively annotated genes related to

the aforementioned five metabolite classes (Kanehisa and Goto, 2000;

Thimm et al., 2004; Chan et al., 2011; Fraser and Chapple, 2011; Saito

et al., 2013). Next, we obtained the gene lists (actual gene lists) from the

resulting loci that glucosinolates, flavonoids, phenylpropanoids, amino

acids, and amines mapped to in only control, only stress, and control +

stress datasets. By comparing the actual gene lists and the reference

gene list for the five metabolite classes using LOD thresholds ranging

from 5.3 to 10.0 with an interval of 0.1, we obtained the number of

common genes between the actual and reference gene lists.

The performance of our GWAS conducted in different environments was

evaluated by calculating precision, recall, and F-measure (Powers,

2011). The parameter precision represents the positive predictive value

of the method; recall is equivalent to sensitivity. The two metrics are

often combined as their harmonic mean, known as the F-measure:

precision=
Nc

Ng

recall =
Nc

Nr

F �measure=
23precision3 recall

precision+ recall
;

where Nr is the number of genes provided by the reference gene lists for

each metabolite class, Ng is the number of genes provided by GWAS,

and Nc is the number of common genes between the actual and reference

gene lists.

The significance of overlap between the actual gene list obtained from

GWAS and the reference gene list for the five metabolite classes was

calculated by Fisher’s exact test (Rivals et al., 2007) by using the

‘‘fisher.test’’ function in R.

Network Analysis

Transcript and Metabolite Data Acquisition from Time-Course

Stress Experiments

Transcript data from time-course stress experiments were derived from

our previous work (Caldana et al., 2011), resulting in 15 089 transcripts
olecular Plant 11, 118–134, January 2018 ª The Author 2017. 131
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for further network analysis. We used the same plant material from

our previous work (Caldana et al., 2011) to perform untargeted

metabolomic profiling. Metabolite extraction, measurement, and data

processing followed the same process mentioned above. Significantly

changed metabolites across 23 time points in each condition were

selected by ANOVA using the ‘‘aov’’ function in R (http://www.

r-project.org/) at a significance level of 0.05 with a multiple correction

test, using false discovery rate (FDR) estimation by comparing

three replicates at all time points. The metabolites that changed

significantly in each condition were used for the construction of

condition-specific networks. PCA for metabolite and transcript profiles

was performed using the ‘‘pcaMethods’’ Bioconductor package

(Stacklies et al., 2007).

Condition-Specific Network Construction and Network Quality

Assessment

Pearson correlation coefficient (PCC) between metabolite and tran-

script features was calculated in R. PCC thresholds for building edges

between features (metabolites and transcripts) in networks in each

condition were obtained based on a permutation test (FDR < 0.05).

The performance of each condition-specific network was assessed

by precision, recall, and F-measure, which followed the procedure

described previously (Wu et al., 2016). The optimal PCC thresholds

were selected when F-measure reached the highest values. Based on

the optimal PCC thresholds, undirected networks for each condition

were constructed with nodes representing metabolite and transcript

features and edges connecting the nodes between features, with a

PCC passing the threshold using the igraph package (Csardi and

Nepusz, 2006) in R.

Permutation Test for the Network Analysis for Integration with

GWAS

All metabolite features in the GWAS and network datasets were

matched to obtain common metabolite features for further data integra-

tion. We regarded metabolite features from these two datasets as iden-

tical if (i) their mass difference was less than 5 ppm, (ii) their retention-

time difference was less than 0.05 min, and (iii) they shared similar

spectra. For a given metabolite shared between the GWAS and

network datasets, the number of genes from GWAS that were also sup-

ported by network analysis was defined as the true number of

confirmed genes (x). To check whether the network analysis can sup-

port the GWAS in selection and prioritization of candidate genes better

than random networks, we applied a permutation test. We used the

same number of randomly selected genes as the number of genes pro-

vided by network analysis. The randomly selected genes were used to

compare and support the genes provided by GWAS, and the permuted

number of confirmed genes (yk) was obtained. To estimate a p value

empirically, we then compared the true number of confirmed genes

(x) and permuted number of confirmed genes (yk) in k permutations

(k = 10 000):

p=
1

n

Xn

k = 1

Fðx; ykÞ;

Fðx; yÞ=
�
0
1

for x > yk
else

:

Hence, if the true number of confirmed genes is higher than the permuted

number of confirmed genes for 9500 of the 10 000 permutations, we

obtain a p value estimate of 0.05.

Comparison of AT3G55700 Protein Sequencewith Its Orthologs

We compared the identity of the No. 294 amino acid in the sequence of

AT3G55700 with that from 16 other species (Arabidopsis lyrata, Capsella

rubella, Brassica rapa, Gossypium raimondii, Theobroma cacao, Citrus

sinensis, Eucalyptus grandis, Prunus persica, Malus domestica, Fragaria

vesca, Medicago truncatula, Glycine max, Ricinus communis, Manihot

esculenta, Populus trichocarpa, and Vitis vinifera).
132 Molecular Plant 11, 118–134, January 2018 ª The Author 2017.
Statistics for Knockout Validation Experiment

Metabolite intensity data after transformation and normalization were

used for ANOVA to test the significance levels of metabolite changes in

knockout and Col-0 plants under normal and stress conditions, following

by correction for multiple comparisons using the ‘‘p.adjust’’ function in R

(http://www.r-project.org/). Subsequently, pairwise comparison was con-

ducted by the Tukey’s HSD tests using the ‘‘TukeyHSD’’ function in R.

Data Availability

All data generated or analyzed during this study are available as a public

resource. The raw metabolomics datasets from the two-condition-

based GWAS and the time-course stress experiment are provided in

Supplemental Tables 3 and 7. The gene expression dataset from the

time-course stress experiment was obtained from our previous publica-

tion (Caldana et al., 2011), which was deposited in the Array-Express

repository (http://www.ebi.ac.uk/arrayexpress) under accession number

E-MTAB-375.
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