Transcription Factors (from Wray et al Mol Biol Evol 20:1377)

Phenotype is affected by mutations in:

- 1. Structural region of a gene
 - ✓ Function of a protein is modified (structure/function relationship)
- 2. Regulatory region of a gene
 - ✓ When the protein is expressed (gene regulation)

Considerations of gene regulations

- 1. Change the regulation pattern of a gene can change phenotype
- 2. One transcription factor (TF) can affected multiple genes in a pathway
- 3. TF orhtologs will regulate different organisms differently
- 4. Promoter contain module that can be changed to affect expression

Approaches to studying gene regulation

1. Mutants

Do induced mutants represent natural variation?

- 2. Expression patterns
 - ✓ Expression patterns of orthologs can differ among species
- 3. Expression levels
 - ✓ Phenotypic differences can result from changes in the amount of a protein

Effect of varying expression level

- 1. Spatial effects
 - ✓ Varying the amount of expression in a tissue can change phenotype
- 2. Cis-effects
 - ✓ Variation in expression level often related to changes in cis-elements
- 3. Inducibility
 - ✓ Alleles can be induced differentially

Levels of expression can vary at the:

- 1. mRNA level
- 2. Protein level

What amount of the variation is the result of "controlling region" variation???

- 1. Natural variation exists in promoters
 - ✓ Associated with phenotypic changes
- 2. Artificial selection of promoter sequences can change expression
 - ✓ Maize *tb* locus is an example
- 3. Promoter "elements" are conserved among species
 - ✓ Specific sequences important for gene expression
- 4. Variation in promoter sequence related to human disease susceptibility
 - ✓ Susceptibility to specific pathotypes related to promoter sequences

Transcription patterns are variable

- 1. Transcription initiation is the most important step in phenotypic expression
- 2. Regulation is at the gene not gene family level
 - ✓ Paralogs are independently regulated
- 3. Transcription is dynamic
 - ✓ Expression levels vary
 - ✓ Expression can fluctuate rapidly
 - ✓ Expression in neighboring cells can differ
- 4. Expression profiles vary among genes
 - ✓ Regulatory gene expression profile is inducible and highly variable
 - ✓ Housekeeping gene expression is generally constitutive but varies in response to stimuli and by cell type

Role of Controlling Regions (=Promoters) in Gene Expression

- 1. Promoters
 - ✓ Contain sequence motifs that bind factors that modulate gene expression
- 2. Constitutive (housekeeping) promoters
 - ✓ On by default,
 - ✓ Turned off in response to stimuli
- 3. Inducible promoters
 - ✓ Off by default
 - ✓ Turned on in response to stimuli
- 4. TF determine if genes are turned on or off

Promoters

- 1. Universal conserved features are not found
- 2. Common sequence motifs not found

Basal Gene Expression

- 1. Basal promoter
 - ✓ RNA polymerase complex binding site
 - ✓ Contains TATA box or initiator element
 - ✓ Null promoter exist
 - ✓ Lacks TATA box or initiator element
 - ✓ Multiple basal promoters exist for some genes
- 2. TATA-box binding protein (TBP)
 - ✓ First protein to bind the basal promoter
 - ✓ Other proteins guide TBP to the binding site
- 3. RNA polymerase holoenzyme complex
 - ✓ Complex interactions of proteins builds the transcription complex
- 4. Transcription start site
 - ✓ Begins about 30 bp downstream of site where the transcription complex
- 5. Translation start site
 - ✓ Begins about 10 10,000 bp from transcription start site
- 6. Basal promoters provides for minimal, low level of expression
 - ✓ Expression mediated by constitutively expressed general transcription factors

Modifying Basal Gene Expression Levels

- 1. TF binding to controlling regions required for full gene expression
 - ✓ TF are specific to cell types and stimuli conditions
 - ✓ Interaction of controlling regions and TF controls gene expression

Controlling Region TF Binding Sites

- 1. Binding sites are isolated in controlling region
 - ✓ Binding sites are embedded in regions to which no TF bind
- 2. Binding sites numbers
 - ✓ 10-50 binding sites for 5-15 TF
- 3. Role of other sequences
 - ✓ Local, sequence-specific conformational changes can affect TF binding
 - ✓ AT-rich regions
 - ✓ Z-DNA
- 4. Spacing of binding sites
 - ✓ Partial overlap
 - ✓ 10s of kilobases

Features of TF Binding Sites

- 1. Size
 - ✓ Footprint (sequences covered by TF) is 10-20 bp
 - ✓ Direct binding site is 5-8 bp
 - ✓ Essential sequence is 4-6 bp
- 2. Site definition
 - ✓ Consensus sequence (although not all consensus sequences bind TF)
 - ✓ Biochemical activity (required to define a functional sequence)
- 3. Binding sites can overlap
 - ✓ TF pool determines which site is bound
 - ✓ Binding sites compete for a limited TF pool
- 4. Location
 - ✓ 100 basepairs to 100 kilobases from transcription start site
- 5. Functional location 000
 - ✓ >30 kb 5' of basal promoter
 - ✓ few kb of basal promoter
 - ✓ in 5' UTR
 - ✓ introns
 - ✓ >30 kb 3' of basal promoter
 - ✓ exon
 - ✓ other side of adjacent gene
- 6. Location constraints
 - ✓ Some sites are constrained to specific positions relative to transcription start site
- 7. Isolating binding sites effects
 - ✓ Insulator sequences limit TF interactions to specific basal promoters
 - ✓ TATA or TATA-less TF interaction specificity
 - ✓ Specific recruitment of TF at a specific sequence to interact with basal promoter
- 8. Multiple control

- ✓ On set of binding sets controls paralogs on opposite strands in opposite orientation
- ✓ Cross regulated sites share common binding sites

Abundance of Transcription Factors

- 1. TF are members of small to large multi-gene families
 - ✓ Arabidopsis
 - ➤ (CCAAT-DR1 Family) to 164 (C3H Family) paralog families
- 3. Result from gene duplication events
- 4. 12-15 unique DNA binding domains
 - ✓ Evolutionary conservation

Modular Nature of Transcription Factors

- 1. DNA binding domain
 - ✓ Localized
 - ➤ MADS-box or homeo domains
 - ✓ Dispersed
 - > Zn-finger or leucine zipper domains
- 2. Protein-protein interaction domain
 - ✓ Binding to other proteins necessary for activation
- 3. Intracellular trafficking domains
 - ✓ Nuclear localization signal
- 4. Ligand binding domain
 - ✓ Steroid or hormone-binding domains
- 5. Evolutionary domain shuffling has occurred
 - ✓ Protein-protein interaction domain lost but DNA binding domain maintained

Transcription Factor DNA Binding Domain

- 1. Most bind the major groove of DNA
- 2. Domain sequence is highly conserved
 - ✓ Single amino acid mutations can alter significantly TF binding
- 3. TF binding specificity ranges from 3-5bp
- 4. Specificity may be increased by
 - ✓ Multiple binding domains
 - ✓ Domains that bind minor groove
 - ✓ Dimerization of two proteins, either homomeric or heteromeric
- 5. Binding is strong and highly specific
 - \checkmark 5000 − 20,000 copies of TF needed for high binding specificity
- 6. Cofactor interactions increase specificity
 - ✓ Phosophorylation
- 7. Paralogs may have unique binding specificities

Transcription Factor Protein-Protein Interactions Modulate Gene Expression

- 1. Increase (or decrease) the frequency in which the transcription apparatus is built
 - ✓ Can recruit (or prevent recruitment) of apparatus components
- 2. Specific interactions necessary for effects to be realized
 - ✓ As homodimers
 - ✓ As heterodimers
 - ✓ As solo proteins
- 3. Neighboring effects
 - ✓ TF at one site can prevent cofactor from interacting with a neighboring site
- 4. Altering chromatin structure
 - ✓ Recruit other complexes that
 - ✓ Acetylate, deacetylate, methylate, or demethylate histones
 - ✓ Methylate or demethylate DNA
- 5. Create physical bends
 - ✓ Facilitates binding of other TF
- 6. Cofactors can bring TF and transcriptional apparatus together

Transcription Factor Activation or Repression of Transcription

- 1. Activation or repressor domains exists in TF
- 2. Action can be mediated through direct (or indirect via TAF) interaction with TBP

Transcription Factor Activation Depends Upon Specific Modifications and Interactions

- 1. Post-translational modifications such as phosphorylation necessary
- 2. Activation and repression domains may reside in same protein
 - ✓ Specific functional activity depends upon cofactor involvement
- 3. A TF can act as a repressor if it blocks the binding site of a TF activator
 - ✓ This interaction can have a downstream effect on other expression steps

Cooperative-binding and Interaction of Transcription Factors

- 1. Precise spacing required for some interactions involving TF
 - ✓ Nucleosome (40 bp multiples) or decondensed DNA (10 bp multiples) distances
 - ✓ Interactions with chromatin remodeling complexes may have a moderate distance requirement
- 2. Bending and looping supports interactions
 - ✓ Removes distance specificity requirement

Role of Functional Modules

- 1. Functional modules can have several functions
 - ✓ Initiate transcription
 - ✓ Boost transcription rate
 - ✓ Mediate extracellular signals
 - ✓ Repress transcription
 - ✓ Insulate on module from another (insulator function)
 - ✓ Bring other modules into contact with basal promoter
 - ✓ Integrate other module status into a global expression pattern

Additive and Epistatic Interactions of Transcription Factors

- 1. Modifying one TF and its module interaction can additively reduce the phenotype
- 2. Modifying insulator, tethering, or inegrator TF functions is epistatic
- 3. Proper expression, recruitment, and modular association of TF is necessary for full phenotypic expression

A Transcription Family Has Multiple Target Genes

- 1. Because of the limited number of TF, a single TF may interact with 10s to 100s of genes
- 2. Drosophila *eve* and *ftz* regulate the majority of genes in the genome
- 3. The function of TF networks may genes
- 4. Mutations can be modulated by the effects of other downstream genes

The Genome Is Significantly Involved in Gene Regulation

- 1. The number of promoter sequences is equal to the number of protein coding sequences
- 2. Transcription regulation a major function of the genome

Arabidopsis Transcription Factors (information from: http://arabidopsis.med.ohiostate.edu/AtTFDB/) Total = 1430 transcription factors.

Family	Description	Number
ABI3VP1 Family		18
Alfin-like Family		7
AP2-EREBP Family	AP2(Apetala) /EREBP (ethylene-responsive	120
	element binding protein) transcription factors	
ARF Family	Auxin response transcription factors	22
ARR-B Family	Type B regulators of phosphorealy signaling	15
bHLH Family	Basic helix-loop-helix transcription factors	146
<u>bZIP Family</u>	Basic leucine zipper transcription factors	70
C2C2-CO-like Family	CONSTANS-like transcription factors	30
C2C2-Dof Family	Dof transcription factors	36
C2C2-Gata Family	GATA motif binding transcription facotrs	28
C2C2-YABBY Family	YABBY transcription factors	5
C2H2 Family	Zinc finger protein 1 transcription factors	98
C3H Family		164
CCAAT-DR1 Family		2
CCAAT-HAP2 Family	CCAAT-binding transcription factors related to yeast HAP2 family	10
CCAAT-HAP3 Family	CCAAT-binding transcription factors related to yeast HAP3 family	10
CCAAT-HAP5 Family	CCAAT-binding transcription factors related to yeast HAP5 family	13
CPP Family	yeast HAF 3 family	8
E2F-DP Family	G1/S phase regulatory transcription factors	8
EIL Family	Ethylene insensitive 3 transcription factors	6
G2-like Family	Maize golden 2 transcription factors	4
GRAS Family	SCARECROW-like transcription factors	25
<u>-</u>	Rice GROWTH-REGULATING FACTOR	9
GRF Family		7
HB Family	transcription factors Homeobox transcription factors	66
HSF Family	Heat shock transcription factors	21
MADS Family	MADS box transcription factors	100
MYB Family	MYB-binding domain transcription factors	137
		+
MYB-related Family	MYB-related-binding domain transcription factors	90
NAC Family	NAC auxin signal transducing transcription factors	
Orphan Family	CDI 1 transcription factors	3
SBP Family	SPL1 transcription factors TCP transcription factors	16 26
Tribaliz Family	TCP transcription factors CT 1 and GT 2 tribality binding domain	26
<u>Trihelix Family</u>	GT-1 and GT-2 trihelix binding domain	29
TUD Family	transcription factors Typylin transcription factors	10
TUB Family	Tubulin transcription factors	10
WRKY Family	WRKY transcription factors	69